Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a98, author = {N. V. Baidakova}, title = {An algorithm for constructing a finite element of the third degree}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {799--814}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a98/} }
N. V. Baidakova. An algorithm for constructing a finite element of the third degree. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 799-814. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a98/
[1] P. G. Ciarlet, P. A. Raviart, “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46 (1972), 177–199 | DOI | MR | Zbl
[2] P. Jamet, “Estimation d'erreur pour des éléments finis droits presque dégénérés”, RAIRO Anal. Numer., 10 (1976), 43–60 | MR | Zbl
[3] Yu. N. Subbotin, “The dependence of estimates of a multidimensional piecewise-polynomial approximation on the geometric characteristics of a triangulation”, Trudy Mat. Inst. Steklov, 189, 1989, 117–137 | MR
[4] M. Kr̆íz̆ek, “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29 (1992), 513–520 | DOI | MR
[5] A. Rand, “Average interpolation under the maximum angle condition”, SIAM J. Numer. Anal., 50 (2012), 2538–2559 | DOI | MR | Zbl
[6] A. Ženišek, J. Hoderova-Zlamalova, “Semiregular Hermite tetrahedral finite elements”, Appl. of Math., 4 (2001), 295–315 | MR | Zbl
[7] N. V. Baidakova, “On some interpolation third-degree plynomials on a three-dimensional simplex”, Trudy Inst. Mat. Mekh. UrO RAN, 14, 2008, 43–57 | MR