Cubature formulas on a sphere invariant under the dihedral group D2h
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 252-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the transformations of dihedral group of rotations with inversion D2h is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry group up to the 35th order of accuracy.
Keywords: numerical integration, dihedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2016_13_a93,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere invariant under the dihedral group {D2h}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {252--259},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a93/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere invariant under the dihedral group D2h
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 252
EP  - 259
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a93/
LA  - ru
ID  - SEMR_2016_13_a93
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere invariant under the dihedral group D2h
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 252-259
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a93/
%G ru
%F SEMR_2016_13_a93
A. S. Popov. Cubature formulas on a sphere invariant under the dihedral group D2h. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 252-259. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a93/

[1] S. L. Sobolev, “Cubature formulas on a sphere which are invariant under transformation of finite rotational groups”, Dokl. Akad. Nauk SSSR, 146:2 (1962), 310–313 (in Russian) | MR | Zbl

[2] S. L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sibirskii Mat. Zh., 3:5 (1962), 769–796 (in Russian) | MR | Zbl

[3] A. D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl

[4] V. I. Lebedev, “Nodes and weights of Gauss–Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 (in Russian) | MR | Zbl

[5] V. I. Lebedev, “On quadratures for a sphere”, Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976), 293–306 (in Russian) | MR | Zbl | Zbl

[6] V. I. Lebedev, “Quadrature formulas for a sphere of the 25th to the 29th orders of accuracy”, Sibirskii Mat. Zh., 18:1 (1977), 132–142 (in Russian) | MR | Zbl

[7] V. I. Lebedev, D. N. Laikov, “Quadrature formula of 131st algebraic order of accuracy for a sphere”, Dokl. RAN, 366:6 (1999), 741–745 (in Russian) | MR | Zbl

[8] S. I. Konyaev, “Gauss type quadratures for a sphere invariant under icosahedral group with inversion”, Mat. Zametki, 25:4 (1979), 629–634 (in Russian) | MR | Zbl

[9] S. I. Konyaev, “Formulas for numerical integration on a sphere”, Embedding Theorems and Their Applications, Trudy Seminara Akad. S. L. Soboleva, 1, Novosibirsk, 1982, 75–82 (in Russian) | MR | Zbl

[10] S. I. Konyaev, “On invariant quadrature formulae for a sphere”, Russ. J. Numer. Anal. Math. Modelling, 10:1 (1995), 41–47 | DOI | MR | Zbl

[11] I. P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981 (in Russian) | MR | Zbl

[12] A. S. Popov, “Cubature formulae for a sphere which are invariant with respect to the tetrahedral group”, Computational Mathematics and Mathematical Physics, 35:3 (1995), 369–374 | MR | Zbl

[13] A. S. Popov, “Cubature formulae of high orders of accuracy for a sphere which are invariant with respect to the tetrahedral group”, Computational Mathematics and Mathematical Physics, 36:4 (1996), 417–421 | MR | Zbl

[14] A. S. Popov, “Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups”, Computational Mathematics and Mathematical Physics, 38:1 (1998), 30–37 | MR | Zbl

[15] A. S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Siberian J. of Numer. Mathematics, 5:4 (2002), 367–372 (in Russian)

[16] A. S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Siberian J. of Numer. Mathematics, 8:2 (2005), 143–148 (in Russian) | Zbl

[17] A. S. Popov, “Cubature formulas on a sphere invariant under the icosahedral rotation group”, Numerical Analysis and Applications, 1:4 (2008), 355–361 | DOI

[18] A. S. Popov, “Cubature formulas on a sphere invariant under the tetrahedral group with inversion”, Siberian Electronic Mathematical Reports, 11 (2014), 372–379 (in Russian) | Zbl

[19] A. S. Popov, “Cubature formulae of the fourth and seventh accuracy orders for a sphere invariant under the group of rotations of a square about the polar axis”, Numerical Methods and Techniques of Solving Problems in Mathematical Physics, Comp. Cent., Sib. Branch, Russian Acad. Sci., Novosibirsk, 1993, 47–53 (in Russian) | MR

[20] A. S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl

[21] A. S. Popov, “Cubature formulas on a sphere that are invariant with respect to a group of dihedron rotations with inversion D6h”, Numerical Analysis and Applications, 6:1 (2013), 49–53 | DOI | Zbl

[22] A. S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion D4h”, Siberian Electronic Mathematical Reports, 12 (2015), 457–464 (in Russian)

[23] A. N. Kazakov, V. I. Lebedev, “Gauss type quadrature formulas for a sphere that are invariant with respect to the group of dihedron”, Trudy Math. Inst. RAN, 203, Nauka, M., 1994, 100–112 (in Russian) | MR | Zbl

[24] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956 | MR | Zbl

[25] L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 (in Russian) | Zbl

[26] V. A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 (in Russian) | MR | Zbl

[27] V. A. Ditkin, L. A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Matematika i Vychisl. Tekhnika, 1, Mashgiz, M., 1953, 3–13 (in Russian) | MR | Zbl