Potentials for elliptic boundary value problems in cones
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1129-1149.

Voir la notice de l'article provenant de la source Math-Net.Ru

One discusses a solving procedure for elliptic pseudo differential equations in a model multidimensional cone, and using the concept of wave factorization one studies a solvability for this equation. Taking into account the construction for a general solution one needs some additional conditions for a unique solvability. For simplest cases one gives a reduction of the obtained boundary value problem to certain integral equation like classical potential method.
Keywords: elliptic pseudo differential equation, wave factorization, cone, boundary value problem.
@article{SEMR_2016_13_a87,
     author = {V. B. Vasilyev},
     title = {Potentials for elliptic boundary value problems in cones},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1129--1149},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a87/}
}
TY  - JOUR
AU  - V. B. Vasilyev
TI  - Potentials for elliptic boundary value problems in cones
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1129
EP  - 1149
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a87/
LA  - ru
ID  - SEMR_2016_13_a87
ER  - 
%0 Journal Article
%A V. B. Vasilyev
%T Potentials for elliptic boundary value problems in cones
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1129-1149
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a87/
%G ru
%F SEMR_2016_13_a87
V. B. Vasilyev. Potentials for elliptic boundary value problems in cones. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1129-1149. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a87/

[1] S. Agmon, “Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane”, Commun. Pure Appl. Math., 10 (1957), 179–239 | DOI | MR | Zbl

[2] E. Fabes, “Layer potential methods for boundary value problems on Lipschitz domains”, Lect. Notes Math., 1344 (1988), 55–80 | DOI | MR | Zbl

[3] C. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Reg. Conf. Ser. Math., AMS, Providence, 1994 | DOI | MR | Zbl

[4] D. Mitrea, M. Mitrea, M. Taylor, “Layer potentials, the Hodge Laplacian and global boundary problems in nonsmooth Riemannian manifolds”, Mem. Amer. Math. Soc., 713, 2001 | MR | Zbl

[5] G. Hsiao, W. Wendland, Boundary integral equations, Springer-Verlag, Berlin–Heidelberg, 2008 | MR | Zbl

[6] F. D. Gakhov, Boundary Value Problems, Dover Publications, New York, 1981 | MR

[7] N. I. Muskhelishvili, Singular Integral Equations, North Holland, Amsterdam, 1976

[8] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, AMS, Providence, R.I., 1981 | MR | Zbl

[9] V. B. Vasil'ev, “Regularization of multidimensional singular integral equations in non-smooth domains”, Trans. Moscow Math. Soc., 59 (1998), 65–93 | MR | Zbl

[10] V. B. Vasilyev, “Some problems of pseudo differential operators theory”, Math. Bull. Shevchenko Sci. Soc., 10 (2013), 219–226 | Zbl

[11] V. B. Vasil'ev, Wave factorization of elliptic symbols: theory and applications. Introduction to the theory of boundary value problems in non-smooth domains, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000 | MR | Zbl

[12] V. B. Vasil'ev, “Wave factorization of elliptic symbols”, Mathematical Notes, 68 (2000), 556–568 | DOI | MR | Zbl

[13] V. B. Vasilyev, “Elliptic equations and boundary value problems in non-smooth domains”, Pseudo Differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, 213, 2011, 105–121 | MR | Zbl

[14] V. B. Vasilyev, Fourier multipliers, pseudodifferential equations, the wave factorization, boundary value problems, 2nd edition, Editorial URSS, M., 2010 (in Russian)

[15] V. B. Vasilyev, “Pseudo differential equations on manifolds with non-smooth boundaries”, Differential and Difference Equations and Applications, Springer Proc. Math. $\$ Stat., 47, 2013, 625–637 | DOI | MR | Zbl

[16] V. B. Vasilyev, “On solvability of convolution equations in multidimensional cones”, Matematicheskii Forum (Itogi nauku. Yug Rossii), 8 (2014), 87–92 (in Russian)

[17] V. B. Vasilyev, “General boundary value problems for pseudo differential equations and related difference equations”, Adv. Difference Equ., 289 (2013), 1–7 | MR

[18] V. B. Vasilyev, “On the Dirichlet and Neumann problems in multi-dimensional cone”, Mathematica Bohemica, 39 (2014), 333–340 | MR | Zbl

[19] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 | Zbl

[20] V. B. Vasil'ev, “Singular integrals on compact manifolds with singularities”, Differential Equations, 29 (1993), 1427–1428 | MR | Zbl

[21] V. Kozlov, V. Maz'ya, J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, AMS, Providence, 2001 | MR | Zbl

[22] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[23] V. E. Nazaikinskii, A. Yu. Savin, B.-W. Schulze, B. Yu. Sternin, Elliptic theory on singular manifolds, Chapman Hall/CRC, Boca Raton, 2006 | MR | Zbl

[24] Ju. V. Egorov, B.-W. Schulze, Pseudo-differential operators, singularities, applications, Birkhäuser-Verlag, Basel, 1997 | MR | Zbl

[25] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators, J. Wiley, Chichester, 1998 | MR | Zbl

[26] B.-W. Schulze, B. Sternin, V. Shatalov, Differential equations on singular manifolds; semiclassical theory and operator algebras, Wiley-VCH, Berlin, 1998 | MR | Zbl

[27] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, Dover Publications, Mineola, NY, 2007

[28] V. S. Vladimirov, Generalized functions in mathematical physics, Mir Publishers, M., 1979 | MR | Zbl

[29] S. Bochner, W. T. Martin, Several Complex Variables, Princeton Univ. Press, Princeton, NY, 1948 | MR | Zbl

[30] I. B. Simonenko, “New general method for investigation of linear operator equations of singular integral equations type. I; II”, Izvestiya Acad. Sci. USSR, Ser. math., 29 (1965), 567–586 ; 757–782 (in Russian) | MR | Zbl | MR

[31] S. G. Mikhlin, S. Prößdorf, Singular integral operators, Akademie-Verlag, Berlin, 1986 | MR

[32] S. Samko, Hypersingular integrals and their applications, CRC Press, Boca Raton, 2002 | MR | Zbl