Fractional diffusion equation with discretely distributed differentiation operator
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1078-1098.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an initial value problem for a fractional diffusion equation with discretely distributed fractional differentiation operator with respect to time variable. We construct a fundamental solution of the considered equation, give a solution of the problem under study, and prove a uniqueness theorem in the class of rapid growth functions. The fractional differentiation is given by the Dzhrbashyan–Nersesyan operator, and the corresponding results for equations with Caputo and Riemann–Liouville derivatives are particular cases of proved assertions.
Mots-clés : fractional diffusion equation, multi-term fractional diffusion equation
Keywords: Cauchy problem, fractional derivative, discretely distributed fractional differentiation operator, Dzhrbashyan–Nersesyan fractional differentiation operator, Riemann–Liouville derivative, Caputo derivative, Tychonoff condition, Wright function.
@article{SEMR_2016_13_a86,
     author = {A. V. Pskhu},
     title = {Fractional diffusion equation with discretely distributed differentiation operator},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1078--1098},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - Fractional diffusion equation with discretely distributed differentiation operator
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1078
EP  - 1098
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/
LA  - ru
ID  - SEMR_2016_13_a86
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T Fractional diffusion equation with discretely distributed differentiation operator
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1078-1098
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/
%G ru
%F SEMR_2016_13_a86
A. V. Pskhu. Fractional diffusion equation with discretely distributed differentiation operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1078-1098. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/

[1] M. M. Dzhrbashyan, A. B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izv. Akad. Nauk Armenian SSR Matem., 3:1 (1968), 3–28 (in Russian) | MR

[2] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (in Russian) | Zbl

[3] M. Caputo, “Diffusion with space memory modelled with distributed order space fractional differential equations”, Annals of Geophysics, 46:2 (2003), 223–234 | MR

[4] Z. Jiao, Y.-Qu. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer, 2012 | MR | Zbl

[5] V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, 2005 | MR

[6] A. M. Nakhushev, “A contribution to fractional calculus”, Differ. Equations, 24:2 (1988), 239–247 | MR | Zbl

[7] Diethelm K., Ford N. J., “Numerical analysis for distributed-order differential equations”, Journal of Computational and Applied Mathematics, 225 (2009), 96–104 | DOI | MR | Zbl

[8] W. Wyss, “The fractional diffusion equation”, J. Math. Phys., 27:11 (1986), 2782–2785 | DOI | MR | Zbl

[9] W. R. Schneider, W. Wyss, “Fractional diffusion and wave equations”, J. Math. Phys., 30:1 (1989), 134–144 | DOI | MR | Zbl

[10] A. N. Kochubei, “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 485–492 | MR | Zbl

[11] Ya. Fujita, “Integrodifferential equation which interpolates the heat equation and the wave equation. I; II”, Osaka J. Math., 27:2 (1990), 309–321 | MR | Zbl

[12] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[13] E. Buckwar, Yu. Luchko, “Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations”, J. Math. Anal. Appl., 227:1 (1998), 81–97 | DOI | MR | Zbl

[14] R. Gorenflo, Yu. Luchko, F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation”, J. Comput. Appl. Math., 118:1–2 (2000), 175–191 | DOI | MR | Zbl

[15] R. Gorenflo, A. Iskenderov, Yu. Luchko, “Mapping between solutions of fractional diffusion-wave equations”, Fract. Calcul. and Appl. Anal., 3:1 (2000), 75–86 | MR | Zbl

[16] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynam., 29:1 (2002), 145–155 | DOI | MR | Zbl

[17] A. V. Pskhu, “Solution of the first boundary value problem for a fractional-order diffusion equation”, Differ. Equ., 39:9 (2003), 1359–1363 | DOI | MR | Zbl

[18] A. V. Pskhu, “Solution of boundary value problems for the fractional diffusion equation by the Green function method”, Differ. Equ., 39:10 (2003), 1509–1513 | DOI | MR | Zbl

[19] S. D. Eidelman, A. N. Kochubei, “Cauchy problem for fractional diffusion equations”, Journal of Differential Equations, 199 (2004), 211–255 | DOI | MR | Zbl

[20] A. V. Pskhu, “The fundamental solution of a diffusion-wave equation of fractional order”, Izvestiya: Mathematics, 73:2 (2009), 351–392 | DOI | MR | Zbl

[21] Yu. Luchko, “Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation”, Fractional Calculus and Applied Analysis, 15:1 (2012), 141–160 | DOI | MR | Zbl

[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, The Netherlands, 2006 | MR | Zbl

[23] A. V. Pskhu, Partial differential equations of fractional order, Nauka, M., 2005 (in Russian) | MR | Zbl

[24] V. Daftardar-Gejji, S. Bhalekar, “Boundary value problems for multi-term fractional differential equations”, J. Math. Anal. Appl., 345 (2008), 754–765 | DOI | MR | Zbl

[25] Yu. Luchko, “Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation”, J. Math. Anal. Appl., 374 (2011), 538–548 | DOI | MR | Zbl

[26] H. Jiang, F. Liu, I. Turner, K. Burrage, “Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain”, Computers Mathematics with Applications, 64:10 (2012), 3377–3388 | DOI | MR | Zbl

[27] X. Liu, J. Wang, X. Wang, Y. Zhou, “Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions”, Applied Mathematics and Mechanics, 35:1 (2014), 49–62 | DOI | MR | Zbl

[28] Yu. Luchko, “Maximum principle and its application for the time-fractional diffusion equations”, Fractional Calculus and Applied Analysis, 14:1 (2011), 110–124 | MR | Zbl

[29] M. Al-Refai, Yu. Luchko, “Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives”, Applied Mathematics and Computation, 257 (2015), 40–51 | DOI | MR | Zbl

[30] Z. Li, Y. Liu, M. Yamamoto, “Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients”, Applied Mathematics and Computation, 257 (2015), 381–397 | DOI | MR | Zbl

[31] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, Q. Liu, “Numerical methods for solving the multi-term time-fractional wave-diffusion equation”, Fractional Calculus and Applied Analysis, 16:1 (2013), 9–25 | DOI | MR | Zbl

[32] A. A. Alikhanov, “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Applied Mathematics and Computation, 268:1 (2015), 12–22 | DOI | MR

[33] G. Li, C. Sun, X. Jia, D. Du, “Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain”, Numer. Math. Theor. Meth. Appl., 9:3 (2016), 337–357 | DOI | MR

[34] A. Tychonoff, “Théorèmes d'unicité pour l'équation de la chaleur”, Mat. Sb., 42:2 (1935), 199–216 | Zbl

[35] A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 | DOI | MR | Zbl

[36] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl

[37] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart. J. Math., Oxford Ser., 11 (1940), 36–48 | DOI | MR | Zbl

[38] B. Stanković, “On the function of E. M. Wright”, Publications de L'institut Mathématique, Beograde, 10:24 (1970), 113–124 | MR | Zbl

[39] M. A. Lavrent'ev, B. V. Shabat, Methods of the complex function theory, Nauka, M., 1987 (in Russian) | MR | Zbl