Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a86, author = {A. V. Pskhu}, title = {Fractional diffusion equation with discretely distributed differentiation operator}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1078--1098}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/} }
TY - JOUR AU - A. V. Pskhu TI - Fractional diffusion equation with discretely distributed differentiation operator JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1078 EP - 1098 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/ LA - ru ID - SEMR_2016_13_a86 ER -
A. V. Pskhu. Fractional diffusion equation with discretely distributed differentiation operator. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1078-1098. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a86/
[1] M. M. Dzhrbashyan, A. B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izv. Akad. Nauk Armenian SSR Matem., 3:1 (1968), 3–28 (in Russian) | MR
[2] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (in Russian) | Zbl
[3] M. Caputo, “Diffusion with space memory modelled with distributed order space fractional differential equations”, Annals of Geophysics, 46:2 (2003), 223–234 | MR
[4] Z. Jiao, Y.-Qu. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer, 2012 | MR | Zbl
[5] V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, 2005 | MR
[6] A. M. Nakhushev, “A contribution to fractional calculus”, Differ. Equations, 24:2 (1988), 239–247 | MR | Zbl
[7] Diethelm K., Ford N. J., “Numerical analysis for distributed-order differential equations”, Journal of Computational and Applied Mathematics, 225 (2009), 96–104 | DOI | MR | Zbl
[8] W. Wyss, “The fractional diffusion equation”, J. Math. Phys., 27:11 (1986), 2782–2785 | DOI | MR | Zbl
[9] W. R. Schneider, W. Wyss, “Fractional diffusion and wave equations”, J. Math. Phys., 30:1 (1989), 134–144 | DOI | MR | Zbl
[10] A. N. Kochubei, “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 485–492 | MR | Zbl
[11] Ya. Fujita, “Integrodifferential equation which interpolates the heat equation and the wave equation. I; II”, Osaka J. Math., 27:2 (1990), 309–321 | MR | Zbl
[12] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl
[13] E. Buckwar, Yu. Luchko, “Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations”, J. Math. Anal. Appl., 227:1 (1998), 81–97 | DOI | MR | Zbl
[14] R. Gorenflo, Yu. Luchko, F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation”, J. Comput. Appl. Math., 118:1–2 (2000), 175–191 | DOI | MR | Zbl
[15] R. Gorenflo, A. Iskenderov, Yu. Luchko, “Mapping between solutions of fractional diffusion-wave equations”, Fract. Calcul. and Appl. Anal., 3:1 (2000), 75–86 | MR | Zbl
[16] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynam., 29:1 (2002), 145–155 | DOI | MR | Zbl
[17] A. V. Pskhu, “Solution of the first boundary value problem for a fractional-order diffusion equation”, Differ. Equ., 39:9 (2003), 1359–1363 | DOI | MR | Zbl
[18] A. V. Pskhu, “Solution of boundary value problems for the fractional diffusion equation by the Green function method”, Differ. Equ., 39:10 (2003), 1509–1513 | DOI | MR | Zbl
[19] S. D. Eidelman, A. N. Kochubei, “Cauchy problem for fractional diffusion equations”, Journal of Differential Equations, 199 (2004), 211–255 | DOI | MR | Zbl
[20] A. V. Pskhu, “The fundamental solution of a diffusion-wave equation of fractional order”, Izvestiya: Mathematics, 73:2 (2009), 351–392 | DOI | MR | Zbl
[21] Yu. Luchko, “Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation”, Fractional Calculus and Applied Analysis, 15:1 (2012), 141–160 | DOI | MR | Zbl
[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, The Netherlands, 2006 | MR | Zbl
[23] A. V. Pskhu, Partial differential equations of fractional order, Nauka, M., 2005 (in Russian) | MR | Zbl
[24] V. Daftardar-Gejji, S. Bhalekar, “Boundary value problems for multi-term fractional differential equations”, J. Math. Anal. Appl., 345 (2008), 754–765 | DOI | MR | Zbl
[25] Yu. Luchko, “Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation”, J. Math. Anal. Appl., 374 (2011), 538–548 | DOI | MR | Zbl
[26] H. Jiang, F. Liu, I. Turner, K. Burrage, “Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain”, Computers Mathematics with Applications, 64:10 (2012), 3377–3388 | DOI | MR | Zbl
[27] X. Liu, J. Wang, X. Wang, Y. Zhou, “Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions”, Applied Mathematics and Mechanics, 35:1 (2014), 49–62 | DOI | MR | Zbl
[28] Yu. Luchko, “Maximum principle and its application for the time-fractional diffusion equations”, Fractional Calculus and Applied Analysis, 14:1 (2011), 110–124 | MR | Zbl
[29] M. Al-Refai, Yu. Luchko, “Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives”, Applied Mathematics and Computation, 257 (2015), 40–51 | DOI | MR | Zbl
[30] Z. Li, Y. Liu, M. Yamamoto, “Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients”, Applied Mathematics and Computation, 257 (2015), 381–397 | DOI | MR | Zbl
[31] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, Q. Liu, “Numerical methods for solving the multi-term time-fractional wave-diffusion equation”, Fractional Calculus and Applied Analysis, 16:1 (2013), 9–25 | DOI | MR | Zbl
[32] A. A. Alikhanov, “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Applied Mathematics and Computation, 268:1 (2015), 12–22 | DOI | MR
[33] G. Li, C. Sun, X. Jia, D. Du, “Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain”, Numer. Math. Theor. Meth. Appl., 9:3 (2016), 337–357 | DOI | MR
[34] A. Tychonoff, “Théorèmes d'unicité pour l'équation de la chaleur”, Mat. Sb., 42:2 (1935), 199–216 | Zbl
[35] A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 | DOI | MR | Zbl
[36] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl
[37] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart. J. Math., Oxford Ser., 11 (1940), 36–48 | DOI | MR | Zbl
[38] B. Stanković, “On the function of E. M. Wright”, Publications de L'institut Mathématique, Beograde, 10:24 (1970), 113–124 | MR | Zbl
[39] M. A. Lavrent'ev, B. V. Shabat, Methods of the complex function theory, Nauka, M., 1987 (in Russian) | MR | Zbl