The correctness of a family of integral and delay differential equations, used in models of living systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 815-828.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of integral equations arising in mathematical models of some living systems. Depending on the choice of the survival of elements of living systems integral equation is reduced to the equivalent of the Cauchy problem for non-autonomous differential equations with a point or distributed delays. Problems of existence, uniqueness, nonnegativity and extendibility of solutions are investigated.
Keywords: integral equation, delay differential equation, properties of solutions, mathematical model, living systems.
@article{SEMR_2016_13_a82,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {The correctness of a family of integral and delay differential equations, used in models of living systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {815--828},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - The correctness of a family of integral and delay differential equations, used in models of living systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 815
EP  - 828
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/
LA  - ru
ID  - SEMR_2016_13_a82
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T The correctness of a family of integral and delay differential equations, used in models of living systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 815-828
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/
%G ru
%F SEMR_2016_13_a82
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. The correctness of a family of integral and delay differential equations, used in models of living systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 815-828. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/

[1] S. Busenberg, K. Cooke, “The Effect of Integral Conditions in Certain Equations Modelling Epidemics and Population Growth”, J. Math. Biol., 10 (1980), 13–32 | DOI | MR | Zbl

[2] H. W. Hethcote, H. W. Stech, P. van den Driessche, “Stability analisys for models of diseases without immunity”, J. Math. Biol., 13 (1981), 185–198 | DOI | MR | Zbl

[3] J. Belair, “Lifespans in Population Models: Using Time Delay”, Lecture Notes in Biomathematics, 92, Springer, New York, 1991, 16–27 | DOI | MR

[4] W. G. Aiello, H. I. Freedman, J. Wu, “Analysis of a model representing stage-structured population growth with state-dependent time delay”, SIAM J. Appl. Math., 52:3 (1992), 855–869 | DOI | MR | Zbl

[5] G. Bocharov, K. Hadeler, “Structured Population Models, Conservation Laws and Delay Equations”, J. Diff. Equ., 168:1 (2000), 212–237 | DOI | MR | Zbl

[6] G. Bocharov, F. Rihan, “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125 (2000), 183–199 | DOI | MR | Zbl

[7] N. V. Pertsev, “A two-sided estimates for solutions of a integro differential equation describing the process of hematopoiesis”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2001, no. 6, 58–62 | MR | Zbl

[8] T. Luzyanina, D. Roose, G. Bocharov, “Numerical bifurcation analysis of immunological models with time delays”, J. Comput. Appl. Math., 184 (2005), 165–176 | DOI | MR | Zbl

[9] N. V. Pertsev, B. Y. Pichugin, A. N. Pichugina, “Investigation of an asymptotic behavior of solutions of some epidemic processes models”, The Mathematical Biology and Bioinformatics, 8:1 (2013), 21–48 | DOI

[10] G. Fan, H. R. Thieme, H. Zhu, “Delay differential systems for tick population dynamis”, J. Math. Biol., 71 (2015), 1071–1048 | DOI | MR | Zbl

[11] M. A. Krasnoselskiy, G. M. Vainikko, P. P. Zabreiko, J. B. Rutitskiy, V. J. Stretsko, Approximate solution of operator equations, Nauka, M., 1969 | MR

[12] V. B. Kolmanovskiy, V. R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | Zbl

[13] J. Hale, The theory of functional-differential equations, Mir, M., 1984 | MR

[14] Y. L. Daletskiy, M. G. Krein, Stability of solutions of differential equations in Banach spaces, Nauka, M., 1970 | MR

[15] I. P. Natanson, The theory of functions of a real variable, Gosudarstvennoe izdatelstvo techniko-teoreticheskoj literatury, M., 1957 | MR