Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a82, author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina}, title = {The correctness of a family of integral and delay differential equations, used in models of living systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {815--828}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/} }
TY - JOUR AU - N. V. Pertsev AU - B. Yu. Pichugin AU - A. N. Pichugina TI - The correctness of a family of integral and delay differential equations, used in models of living systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 815 EP - 828 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/ LA - ru ID - SEMR_2016_13_a82 ER -
%0 Journal Article %A N. V. Pertsev %A B. Yu. Pichugin %A A. N. Pichugina %T The correctness of a family of integral and delay differential equations, used in models of living systems %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 815-828 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/ %G ru %F SEMR_2016_13_a82
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. The correctness of a family of integral and delay differential equations, used in models of living systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 815-828. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a82/
[1] S. Busenberg, K. Cooke, “The Effect of Integral Conditions in Certain Equations Modelling Epidemics and Population Growth”, J. Math. Biol., 10 (1980), 13–32 | DOI | MR | Zbl
[2] H. W. Hethcote, H. W. Stech, P. van den Driessche, “Stability analisys for models of diseases without immunity”, J. Math. Biol., 13 (1981), 185–198 | DOI | MR | Zbl
[3] J. Belair, “Lifespans in Population Models: Using Time Delay”, Lecture Notes in Biomathematics, 92, Springer, New York, 1991, 16–27 | DOI | MR
[4] W. G. Aiello, H. I. Freedman, J. Wu, “Analysis of a model representing stage-structured population growth with state-dependent time delay”, SIAM J. Appl. Math., 52:3 (1992), 855–869 | DOI | MR | Zbl
[5] G. Bocharov, K. Hadeler, “Structured Population Models, Conservation Laws and Delay Equations”, J. Diff. Equ., 168:1 (2000), 212–237 | DOI | MR | Zbl
[6] G. Bocharov, F. Rihan, “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125 (2000), 183–199 | DOI | MR | Zbl
[7] N. V. Pertsev, “A two-sided estimates for solutions of a integro differential equation describing the process of hematopoiesis”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2001, no. 6, 58–62 | MR | Zbl
[8] T. Luzyanina, D. Roose, G. Bocharov, “Numerical bifurcation analysis of immunological models with time delays”, J. Comput. Appl. Math., 184 (2005), 165–176 | DOI | MR | Zbl
[9] N. V. Pertsev, B. Y. Pichugin, A. N. Pichugina, “Investigation of an asymptotic behavior of solutions of some epidemic processes models”, The Mathematical Biology and Bioinformatics, 8:1 (2013), 21–48 | DOI
[10] G. Fan, H. R. Thieme, H. Zhu, “Delay differential systems for tick population dynamis”, J. Math. Biol., 71 (2015), 1071–1048 | DOI | MR | Zbl
[11] M. A. Krasnoselskiy, G. M. Vainikko, P. P. Zabreiko, J. B. Rutitskiy, V. J. Stretsko, Approximate solution of operator equations, Nauka, M., 1969 | MR
[12] V. B. Kolmanovskiy, V. R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | Zbl
[13] J. Hale, The theory of functional-differential equations, Mir, M., 1984 | MR
[14] Y. L. Daletskiy, M. G. Krein, Stability of solutions of differential equations in Banach spaces, Nauka, M., 1970 | MR
[15] I. P. Natanson, The theory of functions of a real variable, Gosudarstvennoe izdatelstvo techniko-teoreticheskoj literatury, M., 1957 | MR