Asymptotic properties of solutions to a system describing the spread of avian influenza
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 782-798.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider a system of delay differential equations describing the spread of avian influenza between birds migrating between two territories. We study the asymptotic stability of the zero solution and the periodic solution corresponding to healthy birds. We establish estimates of solutions characterizing the rate of convergence to the zero solution, and also attraction domains and estimates of solutions characterizing the rate of convergence to the periodic solution. The results are obtained by the use of a solution to the special boundary value problem for the Lyapunov differential equation.
Keywords: birds' migration, avian influenza, delay differential equations, ordinary differential equations, Lyapunov differential equation, asymptotic stability, estimates of solutions
Mots-clés : attraction domains.
@article{SEMR_2016_13_a81,
     author = {M. A. Skvortsova},
     title = {Asymptotic properties of solutions to a system describing the spread of avian influenza},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {782--798},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a81/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Asymptotic properties of solutions to a system describing the spread of avian influenza
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 782
EP  - 798
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a81/
LA  - en
ID  - SEMR_2016_13_a81
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Asymptotic properties of solutions to a system describing the spread of avian influenza
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 782-798
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a81/
%G en
%F SEMR_2016_13_a81
M. A. Skvortsova. Asymptotic properties of solutions to a system describing the spread of avian influenza. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 782-798. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a81/

[1] X.-S. Wang, J. Wu, “Periodic systems of delay differential equations and avian influenza dynamics”, J. Math. Sci., 201:5 (2014), 693–704 | DOI | MR | Zbl

[2] L. Bourouiba, J. Wu, S. Newman, J. Takekawa, T. Natdorj, N. Batbayar, C. M. Bishop, L. A. Hawkes, P. J. Butler, M. Wikelski, “Spatial dynamics of bar-headed geese migration in the context of H5N1”, J. R. Soc. Interface, 7 (2010), 1627–1639 | DOI

[3] S. Gourley, R. Liu, J. Wu, “Spatiotemporal distributions of migratory birds: patchy models with delay”, SIAM J. Appl. Dyn. Syst., 9:2 (2010), 589–610 | DOI | MR | Zbl

[4] X.-S. Wang, J. Wu, “Seasonal migration dynamics: periodicity, transition delay, and finite dimensional reduction”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468:2139 (2012), 634–650 | DOI | MR

[5] M. A. Skvortsova, “Estimates of solutions to a system describing birds' migration”, J. Anal. Appl., 13:1–2 (2015), 15–27 | MR | Zbl

[6] G. V. Demidenko, I. I. Matveeva, “On stability of solutions to linear systems with periodic coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl

[7] G. V. Demidenko, I. I. Matveeva, “On stability of solutions to quasilinear periodic systems of differential equations”, Siberian Math. J., 45:6 (2004), 1041–1052 | DOI | MR | Zbl

[8] Ph. Hartman, Ordinary Differential Equations, New York–London–Sydney, 1964 | MR | Zbl