Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 664-693

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the steady boundary value problem which describes polytropic motion of a viscous compressible multifluid in a bounded domain of three-dimensional Euclidian space. We prove the existence of weak solutions to the problem.
Keywords: existence theorem, steady boundary value problem, polytropic equation of state
Mots-clés : viscous compressible multifluid, effective viscous flux.
@article{SEMR_2016_13_a79,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {664--693},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 664
EP  - 693
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/
LA  - ru
ID  - SEMR_2016_13_a79
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 664-693
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/
%G ru
%F SEMR_2016_13_a79
A. E. Mamontov; D. A. Prokudin. Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 664-693. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/