Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a79, author = {A. E. Mamontov and D. A. Prokudin}, title = {Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {664--693}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 664 EP - 693 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/ LA - ru ID - SEMR_2016_13_a79 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 664-693 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/ %G ru %F SEMR_2016_13_a79
A. E. Mamontov; D. A. Prokudin. Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 664-693. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a79/
[1] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl
[2] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | MR | Zbl
[3] M. E. Bogovski, “On solutions of certain problems of vector analysis involving the operators div and grad”, Tr. Semin. im. S. L. Soboleva, 1, Institute of Mathematics, Siberian Branch of USSR Acad. Sci., Novosibirsk, 1980, 5–40 (in Russian) | MR
[4] R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Transactions of the American Mathematical Society, 212 (1975), 315–331 | DOI | MR | Zbl
[5] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2009 | MR | Zbl
[6] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | Zbl
[7] A. V. Kazhikov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian) | MR
[8] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary Solutions to the Equations of Dynamics of Mixtures of Heat-Conductive Compressible Viscous Fluids”, Siberian Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl
[9] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Compressible Models, Oxford University Press, New York, 1998 | MR | Zbl
[10] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | Zbl
[11] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izvestiya: Mathematics, 78:3 (2014), 554–579 | DOI | MR | Zbl
[12] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | MR | Zbl
[13] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl
[14] A. N. Petrov, “Well-posedness of initial-boundary value problems for one-dimensional equations of mutually penetrating flows of ideal gases”, Din. Splosh. Sredy, 56 (1982), 105–121 (in Russian) | MR
[15] D. A. Prokudin, M. V. Krayushkina, “Solvability of steady boundary value problem for a model system of equations of barotropic motion of a mixture of viscous compressible fluids”, Journal of Applied and Industrial Mathematics, 19:3 (2016), 55–67 (in Russian)
[16] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium IV, Pitman Research Notes in Mathematics, 39, ed. R. Knops, Pitman, Boston, 1979, 136–212 | MR | Zbl