Nonlocal problems with an integral boundary condition for the differential equations of odd order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 452-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of nonlocal problems for equations $$u_{ttt} + Au=f(x,t)$$ ($0$, $A$ — elliptic operator) with only two boundary conditions instead of three and with a special integral boundary condition. We prove the existence theorems for regular solutions and indicate a possible generalization of the obtained results.
Keywords: nonlocal problem, integral condition, odd order differential equation, regular solution
Mots-clés : existence.
@article{SEMR_2016_13_a75,
     author = {A. I. Kozhanov and G. A. Lukina},
     title = {Nonlocal problems with an integral boundary condition for the differential equations of odd order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {452--466},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - G. A. Lukina
TI  - Nonlocal problems with an integral boundary condition for the differential equations of odd order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 452
EP  - 466
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/
LA  - ru
ID  - SEMR_2016_13_a75
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A G. A. Lukina
%T Nonlocal problems with an integral boundary condition for the differential equations of odd order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 452-466
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/
%G ru
%F SEMR_2016_13_a75
A. I. Kozhanov; G. A. Lukina. Nonlocal problems with an integral boundary condition for the differential equations of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 452-466. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/

[1] J.R. Cannon, “The solution of the Heat Equation Subject to the Specification of Energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR

[2] L.I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR

[3] N. I. Ionkin, “The solution of a certain boundary-value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–-304 | MR | Zbl

[4] A.K. Gushchin, V.P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Academy of Sciences. Sbornik Mathematics, 81:1 (1995), 101–-136 | DOI | MR

[5] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–-668 | DOI | MR | Zbl

[6] A. Bouziani, “On a class a parabolic equations with a nonlocal boundary condition”, Bulletin de la Classe des Sciences. Academie Royale de Belgique, X:6 (1999), 61–77 | MR | Zbl

[7] A. Bouziani, “Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equation”, Hiroshima Mathematical Journal, 27:3 (1997), 373–390 | MR | Zbl

[8] A.I. Kozhanov, “On the solvability of boundary value problems with nonlocal integral conditions for parabolic equations”, Nelineynyye granichnyye zadachi, 20, Inst. prikladnoy matematiki i mekhaniki NAN Ukrainy, 2009, 54–76 | MR

[9] A.I. Kozhanov, L.S. Pulkina, “On the solvability of some boundary value problems for linear hyperbolic equations”, Mathem. Journ., 9:2(32) (2009), 78–92

[10] L. S. Pulkina, Some Problems with Nonclassical Conditions for Hyperbolic Equations, Izdat. Samarsk. Univ., Samara, 2012

[11] A.I. Kozhanov, N.S. Popov, “Solvability of nonlocal boundary value problems for pseudoparabolic equations”, Journal of Mathematical Sciences, 186:3 (2012), 438–452 | DOI | MR

[12] N.S. Popov, “On the solvability of boundary value problems for multidimensional pseudoparabolic equations with a nonlocal boundary condition of integral form”, Mat. Zametki YaGU, 19:1 (2012), 82–95 | Zbl

[13] A.M. Abdrakhmanov, A.I. Kozhanov, “A problem with a nonlocal boundary condition for one class of odd-order equations”, Russian Mathematics, 51:5 (2007), 151–159 | DOI | MR

[14] A.M. Abdrakhmanov, “Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order”, Mathematical Notes, 88:2 (2010), 151–159 | DOI | MR | Zbl

[15] G. A. Lukina, “Solvability of the space nonlocal boundary value problems for third order equations”, Mat. Zametki YaGU, 17:1 (2010), 35–46 | Zbl

[16] G. A. Lukina, “Boundary value problems with time integral conditions for third order equations”, Mat. Zametki YaGU, 17:2 (2010), 75–97 | Zbl

[17] A.I. Kozhanov, “On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations”, Differential Equations, 51:8 (2015), 1043–1050 | DOI | MR | Zbl

[18] A. A. Kerefov, “Nonlocal boundary value problems for parabolic equations”, Differential Equations, 15:1 (1979), 52–54 | MR | Zbl

[19] J. Chabrowski, “On the nonlocal problem with a functional for parabolic equation”, Funkcial. Ekvac. Ser. Intern., 27 (1984), 101–123 | MR | Zbl

[20] V. V. Shelukhin, “A variational principle for linear evolution problems nonlocal in time”, Siberian Math. J., 34:2 (1993), 369–384 | DOI | MR | Zbl

[21] V. V.Shelukhin, “A problem nonlocal in time for the equations of the dynamics of a barotropic ocean”, Siberian Math. J., 36:3 (1995), 608–630 | DOI | MR | Zbl

[22] G. Lieberman, “Nonlocal problems for quasilinear parabolic equations”, Nonlinear Problems in Mathematical Physics and Related Topics, International Mathematical Series, 1, Novosibirsk, 2002, 233–-254 | DOI | MR

[23] A.I. Kozhanov, “A time-nonlocal boundary value problem for linear parabolic equations”, Sibirsk. Zh. Industr. Mat., 7:1 (2004), 51–60 | MR | Zbl

[24] M. V. Uvarova, “On some nonlocal boundary value problems for evolution equations”, Siberian Adv. in Math., 21:3 (2011), 211–-231 | DOI | MR

[25] I. V. Tikhonov, “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izv. Math., 67:2 (2003), 333–-363 | DOI | MR | Zbl

[26] I. V. Tikhonov, “Solvability of a problem with a nonlocal integral condition for a differential equation in a Banach space”, Differential Equations, 34:6 (1998), 841–-844 | MR | Zbl

[27] I. V. Tikhonov, “Nonlocal problem with a “periodical” integral condition for a differential equation in Banach space”, Integralnye preobrazovaniya i spetsialnye funktsii, 4:1 (2004), 49–69

[28] V. E. Fedorov, N. D. Ivanova, Yu. Yu. Fedorova, “On a time nonlocal problem for inhomogeneous evolution equations”, Siberian Math. J., 55:4 (2014), 721–-733 | DOI | MR | Zbl

[29] A. I. Kozhanov, “Solvability of Boundary Value Problems for Linear Parabolic Equations with an Integral Condition in a Time Variable”, Yakutian Math. journal, 21:4 (2014), 15–25 | MR

[30] Yu. A. Dubinskii, “Boundary value problems for elliptic-parabolic equations”, Izvestiya AN Arm. SSR. Math., 4:3 (1969), 192–-214 | MR

[31] I. E. Egorov, V. E. Fedorov, Higher-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr Sibirsk. Otdel. Ros. Akad. Nauk, Novosibirsk, 1995 | MR