Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a75, author = {A. I. Kozhanov and G. A. Lukina}, title = {Nonlocal problems with an integral boundary condition for the differential equations of odd order}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {452--466}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/} }
TY - JOUR AU - A. I. Kozhanov AU - G. A. Lukina TI - Nonlocal problems with an integral boundary condition for the differential equations of odd order JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 452 EP - 466 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/ LA - ru ID - SEMR_2016_13_a75 ER -
%0 Journal Article %A A. I. Kozhanov %A G. A. Lukina %T Nonlocal problems with an integral boundary condition for the differential equations of odd order %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 452-466 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/ %G ru %F SEMR_2016_13_a75
A. I. Kozhanov; G. A. Lukina. Nonlocal problems with an integral boundary condition for the differential equations of odd order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 452-466. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a75/
[1] J.R. Cannon, “The solution of the Heat Equation Subject to the Specification of Energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR
[2] L.I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 33–59 | DOI | MR
[3] N. I. Ionkin, “The solution of a certain boundary-value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–-304 | MR | Zbl
[4] A.K. Gushchin, V.P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Academy of Sciences. Sbornik Mathematics, 81:1 (1995), 101–-136 | DOI | MR
[5] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–-668 | DOI | MR | Zbl
[6] A. Bouziani, “On a class a parabolic equations with a nonlocal boundary condition”, Bulletin de la Classe des Sciences. Academie Royale de Belgique, X:6 (1999), 61–77 | MR | Zbl
[7] A. Bouziani, “Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equation”, Hiroshima Mathematical Journal, 27:3 (1997), 373–390 | MR | Zbl
[8] A.I. Kozhanov, “On the solvability of boundary value problems with nonlocal integral conditions for parabolic equations”, Nelineynyye granichnyye zadachi, 20, Inst. prikladnoy matematiki i mekhaniki NAN Ukrainy, 2009, 54–76 | MR
[9] A.I. Kozhanov, L.S. Pulkina, “On the solvability of some boundary value problems for linear hyperbolic equations”, Mathem. Journ., 9:2(32) (2009), 78–92
[10] L. S. Pulkina, Some Problems with Nonclassical Conditions for Hyperbolic Equations, Izdat. Samarsk. Univ., Samara, 2012
[11] A.I. Kozhanov, N.S. Popov, “Solvability of nonlocal boundary value problems for pseudoparabolic equations”, Journal of Mathematical Sciences, 186:3 (2012), 438–452 | DOI | MR
[12] N.S. Popov, “On the solvability of boundary value problems for multidimensional pseudoparabolic equations with a nonlocal boundary condition of integral form”, Mat. Zametki YaGU, 19:1 (2012), 82–95 | Zbl
[13] A.M. Abdrakhmanov, A.I. Kozhanov, “A problem with a nonlocal boundary condition for one class of odd-order equations”, Russian Mathematics, 51:5 (2007), 151–159 | DOI | MR
[14] A.M. Abdrakhmanov, “Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order”, Mathematical Notes, 88:2 (2010), 151–159 | DOI | MR | Zbl
[15] G. A. Lukina, “Solvability of the space nonlocal boundary value problems for third order equations”, Mat. Zametki YaGU, 17:1 (2010), 35–46 | Zbl
[16] G. A. Lukina, “Boundary value problems with time integral conditions for third order equations”, Mat. Zametki YaGU, 17:2 (2010), 75–97 | Zbl
[17] A.I. Kozhanov, “On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations”, Differential Equations, 51:8 (2015), 1043–1050 | DOI | MR | Zbl
[18] A. A. Kerefov, “Nonlocal boundary value problems for parabolic equations”, Differential Equations, 15:1 (1979), 52–54 | MR | Zbl
[19] J. Chabrowski, “On the nonlocal problem with a functional for parabolic equation”, Funkcial. Ekvac. Ser. Intern., 27 (1984), 101–123 | MR | Zbl
[20] V. V. Shelukhin, “A variational principle for linear evolution problems nonlocal in time”, Siberian Math. J., 34:2 (1993), 369–384 | DOI | MR | Zbl
[21] V. V.Shelukhin, “A problem nonlocal in time for the equations of the dynamics of a barotropic ocean”, Siberian Math. J., 36:3 (1995), 608–630 | DOI | MR | Zbl
[22] G. Lieberman, “Nonlocal problems for quasilinear parabolic equations”, Nonlinear Problems in Mathematical Physics and Related Topics, International Mathematical Series, 1, Novosibirsk, 2002, 233–-254 | DOI | MR
[23] A.I. Kozhanov, “A time-nonlocal boundary value problem for linear parabolic equations”, Sibirsk. Zh. Industr. Mat., 7:1 (2004), 51–60 | MR | Zbl
[24] M. V. Uvarova, “On some nonlocal boundary value problems for evolution equations”, Siberian Adv. in Math., 21:3 (2011), 211–-231 | DOI | MR
[25] I. V. Tikhonov, “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izv. Math., 67:2 (2003), 333–-363 | DOI | MR | Zbl
[26] I. V. Tikhonov, “Solvability of a problem with a nonlocal integral condition for a differential equation in a Banach space”, Differential Equations, 34:6 (1998), 841–-844 | MR | Zbl
[27] I. V. Tikhonov, “Nonlocal problem with a “periodical” integral condition for a differential equation in Banach space”, Integralnye preobrazovaniya i spetsialnye funktsii, 4:1 (2004), 49–69
[28] V. E. Fedorov, N. D. Ivanova, Yu. Yu. Fedorova, “On a time nonlocal problem for inhomogeneous evolution equations”, Siberian Math. J., 55:4 (2014), 721–-733 | DOI | MR | Zbl
[29] A. I. Kozhanov, “Solvability of Boundary Value Problems for Linear Parabolic Equations with an Integral Condition in a Time Variable”, Yakutian Math. journal, 21:4 (2014), 15–25 | MR
[30] Yu. A. Dubinskii, “Boundary value problems for elliptic-parabolic equations”, Izvestiya AN Arm. SSR. Math., 4:3 (1969), 192–-214 | MR
[31] I. E. Egorov, V. E. Fedorov, Higher-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr Sibirsk. Otdel. Ros. Akad. Nauk, Novosibirsk, 1995 | MR