Weak conjunctions of identities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 280-285
Cet article a éte moissonné depuis la source Math-Net.Ru
We say that a weak conjunction of equalities of partial functions is true if all those equalities are true in a usual sence provided that all functions there are defined. We construct a full and correct system of inference rules for the logic of weak conjunctions of identities.
Keywords:
partial algebras, weak identities.
@article{SEMR_2016_13_a7,
author = {M. S. Sheremet},
title = {Weak conjunctions of identities},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {280--285},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a7/}
}
M. S. Sheremet. Weak conjunctions of identities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 280-285. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a7/
[1] V. A. Gorbunov, M. S. Sheremet, “Horn classes of predicate systems and varieties of partial algebras”, Algebra and Logic, 39:1 (2000), 12–25 | DOI | MR | Zbl
[2] A. Robinson, “Equational Logic of Partial Functions Under Kleene Equality: A Complete and an Incomplete Set of Rules”, The Journal of Symbolic Logic, 54:2 (1989), 354–362 | DOI | MR | Zbl
[3] L. Rudak, “A completeness theorem for weak equational logic”, Algebra Universalis, 16:1 (1983), 331–337 | DOI | MR | Zbl
[4] M. S. Sheremet, “Completeness theorem for the Evans logic of identities”, Siberian Electronic Mathematical Reports, 1 (2004), 24–34 (in Russian, English abstract) | MR | Zbl