Perfect colorings of the prism graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1116-1128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cartesian product of an infinite chain by an edge is termed the infinite prism graph. A complete description of perfect colorings is obtained for prism graph. Bipartition of mentioned graph was used essentially by researchers. It's easy to adapt all results to finite case — finite prism graph and Mobius ladder.
Keywords: prism graph, Mobius ladder, perfect coloring, induced coloring.
Mots-clés : equitable partition, bipartite graph
@article{SEMR_2016_13_a65,
     author = {M. A. Lisitsyna and S. V. Avgustinovich},
     title = {Perfect colorings of the prism graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1116--1128},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a65/}
}
TY  - JOUR
AU  - M. A. Lisitsyna
AU  - S. V. Avgustinovich
TI  - Perfect colorings of the prism graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1116
EP  - 1128
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a65/
LA  - ru
ID  - SEMR_2016_13_a65
ER  - 
%0 Journal Article
%A M. A. Lisitsyna
%A S. V. Avgustinovich
%T Perfect colorings of the prism graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1116-1128
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a65/
%G ru
%F SEMR_2016_13_a65
M. A. Lisitsyna; S. V. Avgustinovich. Perfect colorings of the prism graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1116-1128. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a65/

[1] S. V. Avgustinovich, A. Yu. Vasil'eva, I. V. Sergeeva, “Distance regular colorings of the infinite rectangular grid”, Diskretn. Anal. Issled. Oper., 18:3 (2011), 3–10 | MR | Zbl

[2] S. V. Avgustinovich, M. A. Lisitsyna, “Perfect 2-colorings of transitive cubic graphs”, J. Appl. Industr. Math., 5:4 (2011), 519–528 | DOI | MR | Zbl

[3] S. V. Avgustinovich, I. Yu. Mogil'nykh, “Induced perfect colorings”, Sibirskie Elektronnye Matematicheskie Izvestiya, 8 (2011), 310–316 | MR | Zbl

[4] M. A. Axenovich, “On multiple coverings of the infinite rectangular grid with balls of constant radius”, Discrete Math., 268:1–3 (2003), 31–48 | DOI | MR | Zbl

[5] D. B. Khoroshilova, “On the parameters of perfect 2-colorings of circulant graphs”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 82–89 | MR | Zbl

[6] D. B. Khoroshilova, “On two-color perfect colorings of circular graphs”, Diskretn. Anal. Issled. Oper., 16:1 (2009), 80–92 | MR | Zbl

[7] M. A. Lisitsyna, “Perfect 3-colorings of prism and Mobius ladder graphs”, J. Appl. Industr. Math., 7:2 (2013), 215–220 | DOI | MR | Zbl

[8] O. G. Parshina, “Perfect 2-colorings of infinite circulant graphs with a continuous set of distances”, Diskretn. Anal. Issled. Oper., 21:2 (2014), 76–83 | MR | Zbl

[9] S. A. Puzynina, “Perfect colorings of vertices of the graph $G_{Z^{2}}$ in three colors”, Diskretn. Anal. Issled. Oper., 12:1 (2005), 37–54 | MR | Zbl

[10] S. A. Puzynina, S. V. Avgustinovich, “On periodicity of two-dimensional words”, Theor. Comput. Sci., 391 (2008), 178–187 | DOI | MR | Zbl