@article{SEMR_2016_13_a6,
author = {V. A. Baransky and T. I. Nadymova and T. A. Senchonok},
title = {A new algorithm generating graphical sequences},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {269--279},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a6/}
}
V. A. Baransky; T. I. Nadymova; T. A. Senchonok. A new algorithm generating graphical sequences. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 269-279. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a6/
[1] V. Havel, “A remark on the existence of finite graphs”, Časopis Pěst. Mat., 1 (1955), 477–480 | MR | Zbl
[2] P. Erdős, T. Gallai, “Graphs with vertices having prescribed degree”, Mat. Lapok, 11 (1960), 264–274
[3] S. L. Hakimi, “On the realizability of a set of integers as degrees of the vertices of a simple graph”, J. SIAM Appl. Math., 10 (1962), 496–506 | DOI | MR | Zbl
[4] G. Sierksma, H. Hoogeveen, “Seven criteria for integer sequences being graphic”, J. of Graph Th., 15:2 (1991), 223–231 | DOI | MR | Zbl
[5] A. Iványi, G. Gombos, L. Lucz, T. Matuszka, “Parallel enumeration of degree sequences of simple graphs, II”, Acta Univ. Sapientiae, Informatica, 5:2 (2013), 245–270 | Zbl
[6] J. M. Burns, The number of degree sequences of graphs, Ph. D. thesis, MIT, USA, 2007 | MR
[7] V. A. Baransky, T. I. Nadymova, T. A. Senchonok, “The lattice of graphical partitions”, Groups and Graphs, Algorithms and Automata, Abstracts International Conference and PhD Summer School in honor of the $80^{\mathrm{th}}$ Birthday of Professor Vyacheslav A. Belonogov and of the $70^{\mathrm{th}}$ Birthday of Professor Vitaly A. Baransky (Yekaterinburg, August, 9–15, 2015), 15