Keywords: $\overline{3}$-symmetry, hyperbolic volume.
@article{SEMR_2016_13_a54,
author = {N. V. Abrosimov and E. S. Kudina and A. D. Mednykh},
title = {Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1150--1158},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a54/}
}
TY - JOUR
AU - N. V. Abrosimov
AU - E. S. Kudina
AU - A. D. Mednykh
TI - Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2016
SP - 1150
EP - 1158
VL - 13
UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a54/
LA - ru
ID - SEMR_2016_13_a54
ER -
N. V. Abrosimov; E. S. Kudina; A. D. Mednykh. Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1150-1158. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a54/
[1] N. I. Lobatschefskij, Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Deutsche Übersetzung von H. Liebmann, Teubner, Leipzig, 1904
[2] P. Stäckel, Geometrische Untersuchungen von Wolfgang Bolyai und Johann Bolyai, v. I–II, Leipzig, 1913
[3] T. Weszely, Bolyai János matematikai munkássága, Mathematical works of János Bolyai, Kriterion Könyvkiado, Bukarest, 1981
[4] L. Schläfli, Theorie der vielfachen Kontinuität, Gesammelte mathematishe Abhandlungen, Birkhäuser, Basel, 1950
[5] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 | DOI | MR | Zbl
[6] D. A. Derevnin, A. D. Mednykh, “The volume of the Lambert cube in spherical space”, Mathematical Notes, 86:1 (2009), 176–186 | DOI | MR | Zbl
[7] A. D. Mednykh, J. Parker, A. Yu. Vesnin, “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 357–381 | MR | Zbl
[8] E. B. Vinberg, “Volumes of non-Euclidean polyhedra”, Russian Mathematical Surveys, 48:2 (1993), 15–45 | DOI | MR | Zbl
[9] D. V. Alekseevskij, E. B. Vinberg, A. S. Solodovnikov, Geometry, v. 2, Encyclopaedia of Mathematical Sciences, Spaces of Constant Curvature, ed. E. B. Vinberg, Springer-Verlag, 1993 | MR
[10] G. Sforza, “Ricerche di estensionimetria differenziale negli spazi metrico-projettivi”, Modena Mem. Acc., Ser. III, VIII, Appendice (1906), 21–66
[11] N. V. Abrosimov, A. D. Mednykh, “Volumes of polytopes in spaces of constant curvature”, Fields Inst. Commun., 70 (2014), 1–26, arXiv: 1302.4919 [math.MG] | DOI | MR | Zbl
[12] D. A. Derevnin, A. D. Mednykh, M. G. Pashkevich, “On the volume of a symmetric tetrahedron in hyperbolic and spherical spaces”, Siberian Mathematical Journal, 45:5 (2004), 840–848 | DOI | MR | Zbl
[13] N. V. Abrosimov, M. Godoy-Molina, A. D. Mednykh, “On the volume of a spherical octahedron with symmetries”, J. Math. Sci. (N. Y.), 161:1 (2009), 1–10 | DOI | MR | Zbl
[14] N. V. Abrosimov, G. A. Baigonakova, “Hyperbolic octahedron with $mmm$-symmetry”, Siberian Electronic Mathematical Reports, 10 (2013), 123–140 | MR | Zbl
[15] V. A. Krasnov, “On the volume of hyperbolic octahedra with nontrivial symmetry”, J. Math. Sci. (N. Y.), 214:5 (2016), 675–686 | DOI | Zbl
[16] V. A. Krasnov, “Non-Euclidean octahedra with $mm2$-symmetry”, Mathematical Notes, 99:1 (2016), 160–163 | DOI | MR | Zbl
[17] N. V. Abrosimov, E. S. Kudina, A. D. Mednykh, “On the volume of a hyperbolic octahedron with $\overline{3}$-symmetry”, Proceedings of the Steklov Institute of Mathematics, 288 (2015), 1–9 | DOI | MR | Zbl
[18] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov, “Some applications of the formula for the volume of an octahedron”, Mathematical Notes, 76 (2004), 25–40 | DOI | MR | Zbl
[19] J. H. Conway, H. Burgiel, Ch. Goodman-Strass, The Symmetries of Things, 2008
[20] N. W. Johnson, Geometries and Transformations. Chapter 11: Finite symmetry groups, Manuscript, 2011
[21] F. L. Tóth, Regular Figures, Pergamon Press, New York; Macmillan, 1964 | MR | Zbl