Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a52, author = {Idzhad Kh. Sabitov}, title = {Solutions of the trivial {Monge--Amp\`er} equation with isolated singular points}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {740--743}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a52/} }
TY - JOUR AU - Idzhad Kh. Sabitov TI - Solutions of the trivial Monge--Amp\`er equation with isolated singular points JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 740 EP - 743 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a52/ LA - ru ID - SEMR_2016_13_a52 ER -
Idzhad Kh. Sabitov. Solutions of the trivial Monge--Amp\`er equation with isolated singular points. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 740-743. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a52/
[1] Sabitov I. Kh., “On solutions in whole of the trivial Monge–Ampèr equation”, Modern problems in Mathematics, Mechanics and their applications, International conference dedicated to 70th anniversary of MSU rector academician V. A. Sadovnichy, University book, M., 2009, 200
[2] Sabitov I. Kh., “Isometric Immersions and Embeddings of Locally Euclidean Metrics”, Reviews in Mathematics and Mathematical Physics, 13:1 (2009), 276 | MR
[3] Sabitov I. Kh., “Manifolds and surfaces with locally Euclidean metric”, Geometry in whole, topology and their, applications, Acta, Kharkiv, 2010, 124–140
[4] Sabitov I. Kh., “Isolated singular points of solutions of the trivial Monge–Ampèr equation”, Theory of operators, complex analysis and mathematical modeling, Abstracts of the International scientific conference (village Divnomorsk, September 7–13, 2014), 61–62 | Zbl
[5] Sabitov I. Kh., “Global solutions of the trivial Monge–Ampèr equation with isolated singularities”, Geometry in Odessa-2015, Abstracts of the International conference (May 25–31, 2015), 86 | Zbl
[6] Sabitov I. Kh., “Manifolds and surfaces with locally Euclidean metrics”, Days of Geometry in Novosibirsk-2015, Abstracts of the International conference (August 26–29, 2015), 45–46 | Zbl
[7] José Galvez, Existence, A personal communication, 2016