Manifolds of cubic complexity two
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1-15
Cet article a éte moissonné depuis la source Math-Net.Ru
We give the complete list of all orientable closed 3-manifolds which can be obtained by gluing faces of one or two cubes. For each listed manifold we give a cubic diagram of its minimal cubulation.
Keywords:
cubulation, manifold, complexity.
Mots-clés : classification
Mots-clés : classification
@article{SEMR_2016_13_a49,
author = {Ph. G. Korablev and A. A. Kazakov},
title = {Manifolds of cubic complexity two},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1--15},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/}
}
Ph. G. Korablev; A. A. Kazakov. Manifolds of cubic complexity two. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1-15. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/
[1] S. Matveev, Algorithmic Topology and Classification of 3-Manifolds, Springer, 2007 | MR | Zbl
[2] V. V. Tarkaev, “On the cubic complexity of three-dimensional polyhedra”, Trudy Instituta Matematiki I Mekhaniki, 17:1 (2014), 245–250
[3] G. Amendola, “A 3-manifold complexity via immersed surfaces”, J. Knot Theory Ramifications, 19 (2010), 1549–1569 | DOI | MR | Zbl
[4] G. Amendola, Orientable closed 3-manifolds with surface-complexity one, arXiv: 1011.4196 [math.GT] | MR
[6] J. Weeks, Hyperbolic Structures on 3-manifolds, Ph. D. Thesis, Princeton University, 1985