Manifolds of cubic complexity two
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the complete list of all orientable closed 3-manifolds which can be obtained by gluing faces of one or two cubes. For each listed manifold we give a cubic diagram of its minimal cubulation.
Keywords: cubulation, manifold, complexity.
Mots-clés : classification
@article{SEMR_2016_13_a49,
     author = {Ph. G. Korablev and A. A. Kazakov},
     title = {Manifolds of cubic complexity two},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/}
}
TY  - JOUR
AU  - Ph. G. Korablev
AU  - A. A. Kazakov
TI  - Manifolds of cubic complexity two
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1
EP  - 15
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/
LA  - ru
ID  - SEMR_2016_13_a49
ER  - 
%0 Journal Article
%A Ph. G. Korablev
%A A. A. Kazakov
%T Manifolds of cubic complexity two
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1-15
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/
%G ru
%F SEMR_2016_13_a49
Ph. G. Korablev; A. A. Kazakov. Manifolds of cubic complexity two. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1-15. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a49/

[1] S. Matveev, Algorithmic Topology and Classification of 3-Manifolds, Springer, 2007 | MR | Zbl

[2] V. V. Tarkaev, “On the cubic complexity of three-dimensional polyhedra”, Trudy Instituta Matematiki I Mekhaniki, 17:1 (2014), 245–250

[3] G. Amendola, “A 3-manifold complexity via immersed surfaces”, J. Knot Theory Ramifications, 19 (2010), 1549–1569 | DOI | MR | Zbl

[4] G. Amendola, Orientable closed 3-manifolds with surface-complexity one, arXiv: 1011.4196 [math.GT] | MR

[5] http://matlas.math.csu.ru

[6] J. Weeks, Hyperbolic Structures on 3-manifolds, Ph. D. Thesis, Princeton University, 1985