Inequalities for the sojourn time of random walk above a certain boundary
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 434-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under general conditions, we obtain inequalities for moments of sojourn time of a random walk over linear boundary. We find asymptotics of these moments for random walks with regular or semi-exponential distribution of summands.
Keywords: random walk, sojourn time, inequalities.
@article{SEMR_2016_13_a46,
     author = {A. S. Tarasenko},
     title = {Inequalities for the sojourn time of random walk above a certain boundary},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {434--451},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a46/}
}
TY  - JOUR
AU  - A. S. Tarasenko
TI  - Inequalities for the sojourn time of random walk above a certain boundary
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 434
EP  - 451
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a46/
LA  - ru
ID  - SEMR_2016_13_a46
ER  - 
%0 Journal Article
%A A. S. Tarasenko
%T Inequalities for the sojourn time of random walk above a certain boundary
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 434-451
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a46/
%G ru
%F SEMR_2016_13_a46
A. S. Tarasenko. Inequalities for the sojourn time of random walk above a certain boundary. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 434-451. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a46/

[1] A. A. Borovkov, Probability Theory, Librokom, M., 2009

[2] A. A. Borovkov, K. A. Borovkov, Asymptotical analysis of random walks, v. 1, Slowly varying distributions of jumps, Fizmatlit, M., 2008, 652 pp.

[3] S. V. Nagaev, “Some Limit Theorems for Large Deviations”, Theory of Probability and its Applications, 10:2 (1965), 214–-235 | DOI | MR | Zbl

[4] Spitzer F., Principles of Random Walks, 2nd ed., Springer-Verlag, New York, 1976 | MR