Arc-transitive antipodal distance-regular graphs of diameter three related to~$PSL_d(q)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1339-1345.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate antipodal distance-regular graphs of diameter three and valency $q(q^{d-1}-1)/(q-1)$ with arc-transitive automorphism group which induces an almost simple permutation group on the antipodal classes with the socle isomorphic to $PSL_d(q),$ where $ d\ge 3$. We find that such a graph is necessarily bipartite.
Keywords: arc-transitive graph, distance-regular graph
Mots-clés : antipodal cover.
@article{SEMR_2016_13_a42,
     author = {A. A. Makhnev and L. Yu. Tsiovkina},
     title = {Arc-transitive antipodal distance-regular graphs of diameter three related to~$PSL_d(q)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1339--1345},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a42/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - L. Yu. Tsiovkina
TI  - Arc-transitive antipodal distance-regular graphs of diameter three related to~$PSL_d(q)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1339
EP  - 1345
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a42/
LA  - en
ID  - SEMR_2016_13_a42
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A L. Yu. Tsiovkina
%T Arc-transitive antipodal distance-regular graphs of diameter three related to~$PSL_d(q)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1339-1345
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a42/
%G en
%F SEMR_2016_13_a42
A. A. Makhnev; L. Yu. Tsiovkina. Arc-transitive antipodal distance-regular graphs of diameter three related to~$PSL_d(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1339-1345. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a42/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] A. L. Gavrilyuk, A. A. Makhnev, “Geodesic graphs with homogeneity conditions”, Doklady Mathematics, 78:2 (2008), 743–745 | DOI | MR | Zbl

[3] C. D. Godsil, R. A. Liebler, C. E. Praeger, “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Arc-transitive distance-regular covers of cliques with $\lambda=\mu$”, Proc. Steklov Inst. Math., 284, 2014, 124–134 | DOI | MR | Zbl

[5] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Arc-transitive distance-regular covers of cliques: the almost simple case”, Algebra and Logic (to appear)

[6] V. D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra and Logic, 32:3 (1993), 142–153 | DOI | MR | Zbl

[7] L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$”, Discrete Math., 340:2 (2017), 63–71 | DOI | MR | Zbl

[8] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.6.4, , 2013 http://www.gap-system.org