Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a40, author = {O. V. Kravtsova}, title = {On automorphisms of semifields and semifield planes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1300--1313}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a40/} }
O. V. Kravtsova. On automorphisms of semifields and semifield planes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1300-1313. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a40/
[1] N. L. Johnson, V. Jha, M. Biliotti, Handbook of Finite Translation Planes, Pure and applied mathematics, Chapman/CRC, Boca Raton, FL, 2007 | MR | Zbl
[2] D. R. Hughes, F. C. Piper, Projective Planes, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl
[3] N. D. Podufalov, “On spread sets and collineations of projective planes”, Contemp. Math., 131:1 (1992), 697–705 | DOI | MR | Zbl
[4] H. Lüneburg, Translation Planes, Springer-Verlag, Berlin–Heidelberg–New York, 1980, Zbl 0446.51003 pp. | MR | Zbl
[5] D. E. Knuth, “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR | Zbl
[6] U. Dempwolff, “Semifield planes of order $81$”, J. Geom., 89:1–2 (2008), 1–16 | DOI | MR | Zbl
[7] O. V. Kravtsova, “Semifield planes of even order that admit the Baer involution”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 6:2 (2013), 26–37, English summary (Russian) | Zbl
[8] O. V. Kravtsova, “Semifield planes of odd order that admit a subgroup of autotopisms isomorphic to $A_4$”, Russ. Math., 60:9 (2016), 7–22 | DOI | Zbl
[9] I. R. Hentzel, I. F. Rua, “Primitivity of Finite Semifields with $64$ and $81$ elements”, Int. J. Algebra and Comput., 17:7 (2007), 1411–1429 | DOI | MR | Zbl