Atomless Boolean algebras computable in polynomial time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1035-1039

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of atomless Boolean algebra $ {\mathfrak B} $, computable in polynomial time, that has no primitive recursive function $ f : B \to B $ such that $ 0 f (a) a $ for $ a \neq 0 $. In addition, we show that if two primitive recursive atomless Boolean algebras $ {\mathfrak B}_{1} $ and $ {\mathfrak B}_{2} $ have such functions, then there is an isomorphism $ g : {\mathfrak B}_{1} \to {\mathfrak B}_{2} $ such that $ g $ and $ g^{-1} $ are primitive recursive functions.
Keywords: computable structure, Boolean algebra, primitive recursive structure, polynomial time computability, primitive recursive isomorphism.
@article{SEMR_2016_13_a30,
     author = {P. E. Alaev},
     title = {Atomless {Boolean} algebras computable in polynomial time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1035--1039},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a30/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Atomless Boolean algebras computable in polynomial time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1035
EP  - 1039
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a30/
LA  - ru
ID  - SEMR_2016_13_a30
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Atomless Boolean algebras computable in polynomial time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1035-1039
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a30/
%G ru
%F SEMR_2016_13_a30
P. E. Alaev. Atomless Boolean algebras computable in polynomial time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1035-1039. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a30/