Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a3, author = {A. A. Makhnev and V. I. Belousova}, title = {Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {130--136}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/} }
TY - JOUR AU - A. A. Makhnev AU - V. I. Belousova TI - Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 130 EP - 136 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/ LA - ru ID - SEMR_2016_13_a3 ER -
%0 Journal Article %A A. A. Makhnev %A V. I. Belousova %T Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 130-136 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/ %G ru %F SEMR_2016_13_a3
A. A. Makhnev; V. I. Belousova. Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 130-136. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/
[1] Burichenko V. P., Makhnev A. A., “On amply regular locally cyclic graphs”, Sovrem. math. problems, Abstracts of 42 Vserossiiskoi Molod. Conf., IMM UB RAS, Yekaterinburg, 2011, 181–183
[2] Makhnev A. A., Nirova M. S., “On automorphisms of a distance-regular graph with intersection array $\{51,48,8;1,4,36\}$”, Doklady Mathematics, 87:3 (2013), 269–273 | DOI | MR | Zbl
[3] Burichenko V. P., Makhnev A. A., “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Mathematics, 86:1 (2012), 519–523 | DOI | MR | Zbl
[4] Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{35,32,1;1,2,35\}$”, Siberian electr. Math. Reports, 9 (2012), 285–293 | MR | Zbl
[5] Belousov I. N., “On automorphisms of distance-regular graph with intersection array $\{19,16,8;1,2,8\}$”, Doklady Mathematics, 86:3 (2012), 801–804 | DOI | MR | Zbl
[6] Burichenko V. P., Makhnev A. A., “Automorphisms of distance-regular graph with intersection array $\{15,12,1;1,4,15\}$”, Doklady Mathematics, 91:1 (2015), 37–40 | DOI | MR | Zbl
[7] Makhnev A. A., Chuksina N. V., “Aautomorphisms of distance-regular graph with intersection array $\{75,72,1;1,12,75\}$”, Siberian electr. Math. Reports, 12 (2015), 802–809
[8] Makhnev A. A., Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{42,39,1;1,3,42\}$”, Doklady Mathematics, 84:3 (2011), 814–817 | DOI | MR | Zbl
[9] Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{27,24,1;1,8,27\}$”, Siberian electr. Math. Reports, 10 (2013), 689–698 | MR | Zbl
[10] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New-York, 1989 | MR | Zbl
[11] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[12] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graph with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[13] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl