Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 130-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{45,42,1;1,6,45\}$. It is proved that this graph does not vertex-symmetric.
Keywords: distance-regular graph
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2016_13_a3,
     author = {A. A. Makhnev and V. I. Belousova},
     title = {Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {130--136},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. I. Belousova
TI  - Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 130
EP  - 136
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/
LA  - ru
ID  - SEMR_2016_13_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. I. Belousova
%T Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 130-136
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/
%G ru
%F SEMR_2016_13_a3
A. A. Makhnev; V. I. Belousova. Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 130-136. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/