Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 130-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{45,42,1;1,6,45\}$. It is proved that this graph does not vertex-symmetric.
Keywords: distance-regular graph
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2016_13_a3,
     author = {A. A. Makhnev and V. I. Belousova},
     title = {Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {130--136},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. I. Belousova
TI  - Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 130
EP  - 136
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/
LA  - ru
ID  - SEMR_2016_13_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. I. Belousova
%T Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 130-136
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/
%G ru
%F SEMR_2016_13_a3
A. A. Makhnev; V. I. Belousova. Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 130-136. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a3/

[1] Burichenko V. P., Makhnev A. A., “On amply regular locally cyclic graphs”, Sovrem. math. problems, Abstracts of 42 Vserossiiskoi Molod. Conf., IMM UB RAS, Yekaterinburg, 2011, 181–183

[2] Makhnev A. A., Nirova M. S., “On automorphisms of a distance-regular graph with intersection array $\{51,48,8;1,4,36\}$”, Doklady Mathematics, 87:3 (2013), 269–273 | DOI | MR | Zbl

[3] Burichenko V. P., Makhnev A. A., “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Mathematics, 86:1 (2012), 519–523 | DOI | MR | Zbl

[4] Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{35,32,1;1,2,35\}$”, Siberian electr. Math. Reports, 9 (2012), 285–293 | MR | Zbl

[5] Belousov I. N., “On automorphisms of distance-regular graph with intersection array $\{19,16,8;1,2,8\}$”, Doklady Mathematics, 86:3 (2012), 801–804 | DOI | MR | Zbl

[6] Burichenko V. P., Makhnev A. A., “Automorphisms of distance-regular graph with intersection array $\{15,12,1;1,4,15\}$”, Doklady Mathematics, 91:1 (2015), 37–40 | DOI | MR | Zbl

[7] Makhnev A. A., Chuksina N. V., “Aautomorphisms of distance-regular graph with intersection array $\{75,72,1;1,12,75\}$”, Siberian electr. Math. Reports, 12 (2015), 802–809

[8] Makhnev A. A., Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{42,39,1;1,3,42\}$”, Doklady Mathematics, 84:3 (2011), 814–817 | DOI | MR | Zbl

[9] Tsiovkina L. Yu., “On automorphisms of distance-regular graph with intersection array $\{27,24,1;1,8,27\}$”, Siberian electr. Math. Reports, 10 (2013), 689–698 | MR | Zbl

[10] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New-York, 1989 | MR | Zbl

[11] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[12] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graph with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl

[13] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Siberian electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl