Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a29, author = {A. A. Makhnev and D. V. Paduchikh and M. M. Khamgokova}, title = {Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {972--986}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/} }
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh AU - M. M. Khamgokova TI - Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 972 EP - 986 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/ LA - en ID - SEMR_2016_13_a29 ER -
%0 Journal Article %A A. A. Makhnev %A D. V. Paduchikh %A M. M. Khamgokova %T Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 972-986 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/ %G en %F SEMR_2016_13_a29
A. A. Makhnev; D. V. Paduchikh; M. M. Khamgokova. Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 972-986. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl
[2] A. A. Makhnev, D. V. Paduchikh, “On strongly regular graph with eigenvalue $\mu$ and its extensions”, Proceedings of the Steklov Institute of Mathematics, 285, no. 1, 2014, S128–S135 | DOI | MR | Zbl
[3] A. K. Gutnova, A. A. Makhnev, “Graphs of diameter at most 3, in which neighbourhoods of vertices are pseudo-geometric for $pG_{s-3}(s,t)$”, Doklady Mathematics, 91:2 (2015), 211–214 | DOI | MR | Zbl
[4] P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[5] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[6] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graph with the intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[7] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl
[8] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.7.9, , 2015 http://www.gap-system.org