Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 972-986.

Voir la notice de l'article provenant de la source Math-Net.Ru

Distance-regular graph $\Gamma$ with intersection array $\{117, 80, 18, 1; 1, 18, 80, 117\}$ is an $AT4$-graph. Antipodal quotient $\bar \Gamma$ has parameters $(378, 117, 36, 36)$. Both graphs have strongly regular neighbourhoods with parameters $(117, 36, 15, 9)$. In the work automorphisms of the said graphs are found. In particular, there exist graphs of rank 3 with parameters $(117, 36, 15, 9)$ and $(378, 117, 36, 36)$, and graph with intersection array $\{117, 80, 18, 1; 1, 18, 80, 117\}$ is not arc-transitive.
Keywords: strongly regular graph, eigenvalue, automorphism of graph.
@article{SEMR_2016_13_a29,
     author = {A. A. Makhnev and D. V. Paduchikh and M. M. Khamgokova},
     title = {Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {972--986},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - M. M. Khamgokova
TI  - Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 972
EP  - 986
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/
LA  - en
ID  - SEMR_2016_13_a29
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%A M. M. Khamgokova
%T Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 972-986
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/
%G en
%F SEMR_2016_13_a29
A. A. Makhnev; D. V. Paduchikh; M. M. Khamgokova. Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 972-986. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a29/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[2] A. A. Makhnev, D. V. Paduchikh, “On strongly regular graph with eigenvalue $\mu$ and its extensions”, Proceedings of the Steklov Institute of Mathematics, 285, no. 1, 2014, S128–S135 | DOI | MR | Zbl

[3] A. K. Gutnova, A. A. Makhnev, “Graphs of diameter at most 3, in which neighbourhoods of vertices are pseudo-geometric for $pG_{s-3}(s,t)$”, Doklady Mathematics, 91:2 (2015), 211–214 | DOI | MR | Zbl

[4] P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[5] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[6] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graph with the intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl

[7] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl

[8] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.7.9, , 2015 http://www.gap-system.org