Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a25, author = {A. F. Vasil'ev and T. I. Vasil'eva and E. N. Myslovets}, title = {On finite groups with a given normal structure}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {897--910}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/} }
TY - JOUR AU - A. F. Vasil'ev AU - T. I. Vasil'eva AU - E. N. Myslovets TI - On finite groups with a given normal structure JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 897 EP - 910 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/ LA - ru ID - SEMR_2016_13_a25 ER -
A. F. Vasil'ev; T. I. Vasil'eva; E. N. Myslovets. On finite groups with a given normal structure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 897-910. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/
[1] S. A. Chunikhin, L. A. Shemetkov, “Finite groups”, Itogi Nauki. Ser. Mat. Algebra. Topol. Geom. 1969, VINITI, M., 1971, 7–70 (in Russian)
[2] B. Huppert, N. Blackburn, Finite group III, Springer-Verlag, 1982 | MR | Zbl
[3] W. Gaschütz, “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl
[4] L. A. Shemetkov, “Two directions in the development of the theory of non-simple finite groups”, Russian Mathematical Surveys, 30:2 (1975), 185–206 | DOI | MR | Zbl
[5] L. A. Shemetkov, “Graduated formations of groups”, Mathematics of the USSR-Sbornik, 23:4 (1974), 593–611 | DOI | Zbl
[6] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978 (in Russian) | MR | Zbl
[7] L. A. Shemetkov, A. N. Skiba, Formations of algebraic systems, Nauka, M., 1989 (in Russian) | MR | Zbl
[8] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl
[9] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, 2006 | MR | Zbl
[10] V. A. Vedernikov, “On some classes of finite groups”, Dokl. Akad. Nauk BSSR, 32:10 (1988), 872–875 | MR | Zbl
[11] A. F. Vasil'ev, T. I. Vasil'eva, “On finite groups whose principal factors are simple groups”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:11 (1997), 8–12 | MR | Zbl
[12] D. J. S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–149 | DOI | MR | Zbl
[13] A. Ballester-Bolinches, J. Cossey, “Totally permutable products of finite groups satisfying SC and PST”, Monatsh. Math., 145 (2005), 89–94 | DOI | MR | Zbl
[14] J. C. Beidleman, P. Hauck, H. Heineken, “Totally permutable products of certain classes of finite groups”, J. Algebra, 276 (2004), 826–835 | DOI | MR | Zbl
[15] A. Ballester-Bolinches, J. Cossey, M. C. Pedraza-Aguilera, “On mutually permutable products of finite groups”, J. Algebra, 284 (2005), 127–135 | DOI | MR | Zbl
[16] M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ. House, Passaic, 1982 | MR | Zbl
[17] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1:2 (1957), 115–187 | MR | Zbl
[18] V. S. Monakhov, I. K. Chirik, “On the $p$-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 256–267 | MR
[19] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl
[20] E. N. Myslovets, “On mutually permutable products of generalized supersoluble subgroups of finite groups”, Asian-European Journal of Matematics, 9:3 (2016), 1650054, 10 pp. | DOI | MR | Zbl
[21] A. F. Vasil'ev, T. I. Vasil'eva, “On finite groups with given properties of the chief series”, Discrete mathematics, algebra and their applications, International Scientific Conference, Abstracts (Republic of Belarus, Minsk, October 19–22, 2009), 2009, 12–14 (in Russian)