On finite groups with a given normal structure
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 897-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate classes of finite groups which are local analogues of quasinilpotent group, as well as $c$-supersoluble, $ca$-solvable and $ca$-supersoluble groups introduced by V. A. Vedernikov. We obtained the properties of these classes and their application in the study of factorizations of finite groups by their normal and mutually permutable subgroups.
Keywords: finite group, $Jc$-supersoluble group, $Jca$-supersoluble group, product of normal subgroups
Mots-clés : $J$-quasinilpotent group, $Jca$-soluble group, composition formation.
@article{SEMR_2016_13_a25,
     author = {A. F. Vasil'ev and T. I. Vasil'eva and E. N. Myslovets},
     title = {On finite groups with a given normal structure},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {897--910},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasil'eva
AU  - E. N. Myslovets
TI  - On finite groups with a given normal structure
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 897
EP  - 910
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/
LA  - ru
ID  - SEMR_2016_13_a25
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasil'eva
%A E. N. Myslovets
%T On finite groups with a given normal structure
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 897-910
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/
%G ru
%F SEMR_2016_13_a25
A. F. Vasil'ev; T. I. Vasil'eva; E. N. Myslovets. On finite groups with a given normal structure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 897-910. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a25/

[1] S. A. Chunikhin, L. A. Shemetkov, “Finite groups”, Itogi Nauki. Ser. Mat. Algebra. Topol. Geom. 1969, VINITI, M., 1971, 7–70 (in Russian)

[2] B. Huppert, N. Blackburn, Finite group III, Springer-Verlag, 1982 | MR | Zbl

[3] W. Gaschütz, “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[4] L. A. Shemetkov, “Two directions in the development of the theory of non-simple finite groups”, Russian Mathematical Surveys, 30:2 (1975), 185–206 | DOI | MR | Zbl

[5] L. A. Shemetkov, “Graduated formations of groups”, Mathematics of the USSR-Sbornik, 23:4 (1974), 593–611 | DOI | Zbl

[6] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978 (in Russian) | MR | Zbl

[7] L. A. Shemetkov, A. N. Skiba, Formations of algebraic systems, Nauka, M., 1989 (in Russian) | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl

[9] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, 2006 | MR | Zbl

[10] V. A. Vedernikov, “On some classes of finite groups”, Dokl. Akad. Nauk BSSR, 32:10 (1988), 872–875 | MR | Zbl

[11] A. F. Vasil'ev, T. I. Vasil'eva, “On finite groups whose principal factors are simple groups”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:11 (1997), 8–12 | MR | Zbl

[12] D. J. S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–149 | DOI | MR | Zbl

[13] A. Ballester-Bolinches, J. Cossey, “Totally permutable products of finite groups satisfying SC and PST”, Monatsh. Math., 145 (2005), 89–94 | DOI | MR | Zbl

[14] J. C. Beidleman, P. Hauck, H. Heineken, “Totally permutable products of certain classes of finite groups”, J. Algebra, 276 (2004), 826–835 | DOI | MR | Zbl

[15] A. Ballester-Bolinches, J. Cossey, M. C. Pedraza-Aguilera, “On mutually permutable products of finite groups”, J. Algebra, 284 (2005), 127–135 | DOI | MR | Zbl

[16] M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ. House, Passaic, 1982 | MR | Zbl

[17] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1:2 (1957), 115–187 | MR | Zbl

[18] V. S. Monakhov, I. K. Chirik, “On the $p$-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 256–267 | MR

[19] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[20] E. N. Myslovets, “On mutually permutable products of generalized supersoluble subgroups of finite groups”, Asian-European Journal of Matematics, 9:3 (2016), 1650054, 10 pp. | DOI | MR | Zbl

[21] A. F. Vasil'ev, T. I. Vasil'eva, “On finite groups with given properties of the chief series”, Discrete mathematics, algebra and their applications, International Scientific Conference, Abstracts (Republic of Belarus, Minsk, October 19–22, 2009), 2009, 12–14 (in Russian)