Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 754-761

Voir la notice de l'article provenant de la source Math-Net.Ru

We study automorphisms of a hypothetical distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. It is proved that a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$ is not vertex-transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2016_13_a21,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {754--761},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 754
EP  - 761
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/
LA  - ru
ID  - SEMR_2016_13_a21
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 754-761
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/
%G ru
%F SEMR_2016_13_a21
I. N. Belousov; A. A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 754-761. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/