Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a21, author = {I. N. Belousov and A. A. Makhnev}, title = {Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {754--761}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/} }
TY - JOUR AU - I. N. Belousov AU - A. A. Makhnev TI - Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 754 EP - 761 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/ LA - ru ID - SEMR_2016_13_a21 ER -
%0 Journal Article %A I. N. Belousov %A A. A. Makhnev %T Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 754-761 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/ %G ru %F SEMR_2016_13_a21
I. N. Belousov; A. A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 754-761. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/
[1] I. N. Belousov, A. A. Makhnev, “On extensions of strongly regular graphs without triangles with eigenvalue 3”, Doklady Mathematics, 1 (2014), 395–398 | DOI | MR | Zbl
[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[4] A. A. Makhnev, D. V. Paduchikh, “An automorphism group of a distance-regular graph with intersection array $\{24, 21, 3; 1, 3, 18\}$”, Algebra and Logic, 4 (2012), 319–332 | DOI | MR | Zbl
[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR | Zbl
[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl