Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 754-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study automorphisms of a hypothetical distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. It is proved that a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$ is not vertex-transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2016_13_a21,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {754--761},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 754
EP  - 761
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/
LA  - ru
ID  - SEMR_2016_13_a21
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 754-761
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/
%G ru
%F SEMR_2016_13_a21
I. N. Belousov; A. A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 754-761. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a21/

[1] I. N. Belousov, A. A. Makhnev, “On extensions of strongly regular graphs without triangles with eigenvalue 3”, Doklady Mathematics, 1 (2014), 395–398 | DOI | MR | Zbl

[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, “An automorphism group of a distance-regular graph with intersection array $\{24, 21, 3; 1, 3, 18\}$”, Algebra and Logic, 4 (2012), 319–332 | DOI | MR | Zbl

[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR | Zbl

[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl