On the partition lattice of all integers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 744-753
Cet article a éte moissonné depuis la source Math-Net.Ru
The partition lattice of all integers introduced. The aim is to give a detailed construction of this lattice across all partition lattices of concrete integers and to give algorithms for finding the intersection and the union of elements in this lattice.
Mots-clés :
integer partition
Keywords: lattice, Ferrer’s diagram.
Keywords: lattice, Ferrer’s diagram.
@article{SEMR_2016_13_a20,
author = {V. A. Baranskii and T. A. Koroleva and T. A. Senchonok},
title = {On the partition lattice of all integers},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {744--753},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/}
}
V. A. Baranskii; T. A. Koroleva; T. A. Senchonok. On the partition lattice of all integers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 744-753. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/
[1] Andrews G. E., The Theory of Partitions, Cambridge University Press, 1984 | MR | Zbl
[2] Baransky V. A., Koroleva T. A., Senchonok T. A., “O reshetke razbieniy naturalnogo chisla”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, no. 3, 2015, 30–36 | MR
[3] Baransky V. A., Koroleva T. A., “Reshetka razbieniy naturalnogo chisla”, Doklady RAN, 418:4 (2008), 439–442 | Zbl
[4] Brylawski T., “The lattice of integer partitions”, Discrete Mathematics, 6 (1973), 210–219 | MR | Zbl
[5] Aigner M., Combinatorial Theory, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl