On the partition lattice of all integers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 744-753.

Voir la notice de l'article provenant de la source Math-Net.Ru

The partition lattice of all integers introduced. The aim is to give a detailed construction of this lattice across all partition lattices of concrete integers and to give algorithms for finding the intersection and the union of elements in this lattice.
Mots-clés : integer partition
Keywords: lattice, Ferrer’s diagram.
@article{SEMR_2016_13_a20,
     author = {V. A. Baranskii and T. A. Koroleva and T. A. Senchonok},
     title = {On the partition lattice of all integers},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {744--753},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/}
}
TY  - JOUR
AU  - V. A. Baranskii
AU  - T. A. Koroleva
AU  - T. A. Senchonok
TI  - On the partition lattice of all integers
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 744
EP  - 753
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/
LA  - ru
ID  - SEMR_2016_13_a20
ER  - 
%0 Journal Article
%A V. A. Baranskii
%A T. A. Koroleva
%A T. A. Senchonok
%T On the partition lattice of all integers
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 744-753
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/
%G ru
%F SEMR_2016_13_a20
V. A. Baranskii; T. A. Koroleva; T. A. Senchonok. On the partition lattice of all integers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 744-753. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a20/

[1] Andrews G. E., The Theory of Partitions, Cambridge University Press, 1984 | MR | Zbl

[2] Baransky V. A., Koroleva T. A., Senchonok T. A., “O reshetke razbieniy naturalnogo chisla”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, no. 3, 2015, 30–36 | MR

[3] Baransky V. A., Koroleva T. A., “Reshetka razbieniy naturalnogo chisla”, Doklady RAN, 418:4 (2008), 439–442 | Zbl

[4] Brylawski T., “The lattice of integer partitions”, Discrete Mathematics, 6 (1973), 210–219 | MR | Zbl

[5] Aigner M., Combinatorial Theory, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl