Equivalent equations in semilattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 478-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study semilattice equations which have the same solution in a given semilattice.
Keywords: semilattices
Mots-clés : equations.
@article{SEMR_2016_13_a15,
     author = {A. N. Shevlyakov},
     title = {Equivalent equations in semilattices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {478--490},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Equivalent equations in semilattices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 478
EP  - 490
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/
LA  - ru
ID  - SEMR_2016_13_a15
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Equivalent equations in semilattices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 478-490
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/
%G ru
%F SEMR_2016_13_a15
A. N. Shevlyakov. Equivalent equations in semilattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 478-490. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/

[1] Gilman R., Myasnikov A., Roman'kov V., “Random equations in nilpotent groups”, J. Algebra, 352 (2012), 192–214 | DOI | MR | Zbl

[2] Gilman R., Myasnikov A., Roman'kov V., “Random equations in free groups”, Groups, Complexity, Cryptol., 3 (2011), 257–284 | DOI | MR | Zbl

[3] A. V. Men'shov, “Random systems of equations in free abelian groups”, Siberian Math. J., 55:3 (2014), 440–450 | DOI | MR | Zbl

[4] V. A. Roman'kov, “Equations over groups”, Groups, Complexity, Cryptol., 4:2 (2012), 191–239 | MR | Zbl

[5] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. II. Foundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl