Equivalent equations in semilattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 478-490
Cet article a éte moissonné depuis la source Math-Net.Ru
We study semilattice equations which have the same solution in a given semilattice.
Keywords:
semilattices
Mots-clés : equations.
Mots-clés : equations.
@article{SEMR_2016_13_a15,
author = {A. N. Shevlyakov},
title = {Equivalent equations in semilattices},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {478--490},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/}
}
A. N. Shevlyakov. Equivalent equations in semilattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 478-490. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a15/
[1] Gilman R., Myasnikov A., Roman'kov V., “Random equations in nilpotent groups”, J. Algebra, 352 (2012), 192–214 | DOI | MR | Zbl
[2] Gilman R., Myasnikov A., Roman'kov V., “Random equations in free groups”, Groups, Complexity, Cryptol., 3 (2011), 257–284 | DOI | MR | Zbl
[3] A. V. Men'shov, “Random systems of equations in free abelian groups”, Siberian Math. J., 55:3 (2014), 440–450 | DOI | MR | Zbl
[4] V. A. Roman'kov, “Equations over groups”, Groups, Complexity, Cryptol., 4:2 (2012), 191–239 | MR | Zbl
[5] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. II. Foundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl