Complexity of quasivariety lattices for varieties of unary algebras.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 388-394

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that some minimal $\mathcal{Q}$-universal variety of unary algebras is complicated in the sense of other measures of complexity for lattices of quasivarieties.
Keywords: quasivariety, lattice of quasivariesties, unary algebra, basis of quasi-identities.
@article{SEMR_2016_13_a12,
     author = {A. V. Kravchenko},
     title = {Complexity of quasivariety lattices for varieties of unary {algebras.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {388--394},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a12/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Complexity of quasivariety lattices for varieties of unary algebras.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 388
EP  - 394
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a12/
LA  - ru
ID  - SEMR_2016_13_a12
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Complexity of quasivariety lattices for varieties of unary algebras.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 388-394
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a12/
%G ru
%F SEMR_2016_13_a12
A. V. Kravchenko. Complexity of quasivariety lattices for varieties of unary algebras.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 388-394. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a12/