Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a11, author = {A. G. Pinus}, title = {Dimension of functional clons, metric on its collection}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {366--374}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/} }
A. G. Pinus. Dimension of functional clons, metric on its collection. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 366-374. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/
[1] R. Hartshorne, Algebraic Geometry, Springer, 1977 | Zbl
[2] B. I. Plotkin, “Some concepts of algebraic geometry in universal algebra”, Algebra i Analiz, 9:4 (1997), 249–256 (in Russian) | Zbl
[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite group, World Sci., Hadensack, NY, 2008 | Zbl
[4] E. Post, Two–valued iterative systems of mathematical logic, Annals of Math. studies, 5, Prinseton Univ. Press, Princeton–London, 1941 | Zbl
[5] S. V. Jablonsky, G. P. Gavrilov, V. B. Kudrjavcev, Functions of algebra of logic and classes of Post, Nauka, M., 1966 (in Russian)
[6] S. V. Jablonsky, Introduction to Discrete Mathematic, Nauka, M., 1979 (in Russian)
[7] Ju. I. Janov, A. A. Muchnik, “Existence of $k$-valued closed classes having no finite basis”, Doklady Akad. Nauk SSSR, 127:1 (1959), 44–46 (in Russian) | Zbl