Dimension of functional clons, metric on its collection
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 366-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a series of concepts of dimensions of functional clones as well as natural metric on the class of all clones on any fixed set.
Keywords: functional clone, metric
Mots-clés : dimension.
@article{SEMR_2016_13_a11,
     author = {A. G. Pinus},
     title = {Dimension of functional clons, metric on its collection},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {366--374},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Dimension of functional clons, metric on its collection
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 366
EP  - 374
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/
LA  - ru
ID  - SEMR_2016_13_a11
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Dimension of functional clons, metric on its collection
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 366-374
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/
%G ru
%F SEMR_2016_13_a11
A. G. Pinus. Dimension of functional clons, metric on its collection. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 366-374. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a11/

[1] R. Hartshorne, Algebraic Geometry, Springer, 1977 | Zbl

[2] B. I. Plotkin, “Some concepts of algebraic geometry in universal algebra”, Algebra i Analiz, 9:4 (1997), 249–256 (in Russian) | Zbl

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite group, World Sci., Hadensack, NY, 2008 | Zbl

[4] E. Post, Two–valued iterative systems of mathematical logic, Annals of Math. studies, 5, Prinseton Univ. Press, Princeton–London, 1941 | Zbl

[5] S. V. Jablonsky, G. P. Gavrilov, V. B. Kudrjavcev, Functions of algebra of logic and classes of Post, Nauka, M., 1966 (in Russian)

[6] S. V. Jablonsky, Introduction to Discrete Mathematic, Nauka, M., 1979 (in Russian)

[7] Ju. I. Janov, A. A. Muchnik, “Existence of $k$-valued closed classes having no finite basis”, Doklady Akad. Nauk SSSR, 127:1 (1959), 44–46 (in Russian) | Zbl