Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a107, author = {E. V. Konstantinova and D. S. Krotov and A. D. Mednykh}, title = {On {Graphs} and {Groups,} {Spectra} and {Symmetries} {held~on~August~15--28,} 2016, {Novosibirsk,} {Russia}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {{\CYRA}.1369--{\CYRA}.1382}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a107/} }
TY - JOUR AU - E. V. Konstantinova AU - D. S. Krotov AU - A. D. Mednykh TI - On Graphs and Groups, Spectra and Symmetries held~on~August~15--28, 2016, Novosibirsk, Russia JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - А.1369 EP - А.1382 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a107/ LA - en ID - SEMR_2016_13_a107 ER -
%0 Journal Article %A E. V. Konstantinova %A D. S. Krotov %A A. D. Mednykh %T On Graphs and Groups, Spectra and Symmetries held~on~August~15--28, 2016, Novosibirsk, Russia %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P А.1369-А.1382 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a107/ %G en %F SEMR_2016_13_a107
E. V. Konstantinova; D. S. Krotov; A. D. Mednykh. On Graphs and Groups, Spectra and Symmetries held~on~August~15--28, 2016, Novosibirsk, Russia. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. А.1369-А.1382. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a107/
[1] A. Abiad, W. H. Haemers, “Switched symplectic graphs and their 2-ranks”, Des. Codes Cryptography, 81:1 (2016), 35–41 | DOI | MR | Zbl
[2] S. V. Avgustinovich, E. N. Khomyakova, E. V. Konstantinova, “Multiplicities of eigenvalues of the Star graph”, Sib. Electron. Math. Reports, 13 (2016), 1258–1270
[3] R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. Fr., 125:2 (1997), 167–198 | DOI | MR | Zbl
[4] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not., 15 (2009), 2914–2955 | MR | Zbl
[5] E. Bannai, T. Ito, Algebraic Combinatorics, v. I, Association schemes, Benjamin/Cummings, Menlo Park, California etc., 1984 | MR | Zbl
[6] K. Betsumiya, A. Munemasa, “On triply even binary codes”, J. Lond. Math. Soc., II. Ser., 86:1 (2012), 1–16 | DOI | MR | Zbl
[7] N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebr. Comb., 9:1 (1999), 25–45 | DOI | MR | Zbl
[8] D. Dhar, P. Ruelle, S. Sen, D.-N. Verma, “Algebraic aspects of abelian sandpile models”, J. Phys. A, Math. Gen., 28:4 (1995), 805–831 | DOI | MR | Zbl
[9] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Zeit. Wahrscheinlichkeitstheorie Verw. Gebiete, 57 (1981), 159–179 | DOI | MR | Zbl
[10] P. Cameron, Discrete Mathematics and Big Data, http://cameroncounts.wordpress.com/2016/01/20/discrete-mathematics-and-big-data/
[11] M. Ghorbani, F. N. Larki, “On the spectrum of Cayley graphs”, Sib. Electron. Math. Reports, 13 (2016), 1283–1289
[12] D. V. Churikov, A. V. Vasil'ev, “Automorphism groups of cyclotomic schemes over finite near-fields”, Sib. Electron. Math. Reports, 13 (2016), 1271–1282
[13] C. D. Godsil, R. A. Liebler, C. E. Praeger, “Antipodal distance transitive covers of complete graphs”, Eur. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl
[14] R. Cori, D. Rossin, “On the sandpile group of dual graphs”, Eur. J. Comb., 21:4 (2000), 447–459 | DOI | MR | Zbl
[15] A. Gruber, T. M. Keller, M. L. Lewis, K. Naughton, B. Strasser, “A Characterization of the prime graphs of solvable groups”, J. Algebra, 442 (2015), 397–422 | DOI | MR | Zbl
[16] F. Harary, A. J. Schwenk, Which graphs have integral spectra?, Graphs and Combin., Proc. Capital Conf. (Washington, D.C., 1973), Lect. Notes Math., 406, 1974, 45–51 | DOI | MR | Zbl
[17] S. Heydari, N. Ahanjideh, “Some simple groups which are determined by their character degree graphs”, Sib. Electron. Math. Reports, 13 (2016), 1290–1299
[18] L.-H. Hsu, C.-K. Lin, Graph Theory and Interconnection Networks, CRC Press, Boca Raton–London–New York, 2008 | MR | Zbl
[19] A. A. Ivanov, “A geometric characterization of the Monster”, Groups, Combinatorics and Geometry, Proc. L.M.S. Durham Symp. (Durham, 1990), Lond. Math. Soc. Lect. Note Ser., 165, eds. M. W. Liebeck, J. Saxl, Cambridge University Press, Cambridge, 1992, 46–62 | Zbl
[20] A. A. Ivanov, The Monster Group and Majorana Involutions, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[21] M. Jalali-Rad, A. R. Ashrafi, “Erdös-Ko-Rado properties of some finite groups”, Sib. Electron. Math. Reports, 13 (2016), 1249–1257
[22] V. V. Kabanov, A. V. Mityanina, “On claw-free strictly Deza graphs”, Sib. Electron. Math. Reports (to appear)
[23] A. V. Khalyavin, M. S. Lobanov, Yu. V. Tarannikov, “On plateaued Boolean functions with the same spectrum support”, Sib. Electron. Math. Reports, 13 (2016), 1346–1368
[24] M. Kotani, T. Sunada, “Jacobian tori associated with a finite graph and its abelian covering graphs”, Adv. Appl. Math., 24:2 (2000), 89–110 | DOI | MR | Zbl
[25] R. Krakovski, B. Mohar, “Spectrum of Cayley graphs on the symmetric group generated by transpositions”, Linear Algebra Appl., 437:3 (2012), 1033–1039 | DOI | MR | Zbl
[26] O. V. Kravtsova, “On automorphisms of semifields and semifield planes”, Sib. Electron. Math. Reports, 13 (2016), 1300–1313
[27] S. Kubota, “Strongly regular graphs with the same parameters as the symplectic graph”, Sib. Electron. Math. Reports, 13 (2016), 1314–1338
[28] C. H. Lam, H. Yamauchi, “On the structure of framed vertex operator algebras and their pointwise frame stabilizers”, Commun. Math. Phys., 277:1 (2008), 237–285 | DOI | MR | Zbl
[29] D. Lorenzini, “Smith normal form and Laplacians”, J. Comb. Theory, Ser. B, 98:6 (2008), 1271–1300 | DOI | MR | Zbl
[30] A. A. Makhnev, L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular graphs of diameter three related to $\mathrm{PSL}_d(q)$”, Sib. Electron. Math. Reports, 13 (2016), 1339–1345
[31] B. Mohar, C. Thomassen, Graphs on Surfaces, The John Hopkins University, Baltimore–London, 2001 | MR
[32] S. P. Norton, “Constructing the Monster”, Groups, Combinatorics and Geometry, Proc. L.M.S. Durham Symp. (Durham, 1990), Lond. Math. Soc. Lect. Note Ser., 165, eds. M. W. Liebeck, J. Saxl, Cambridge University Press, Cambridge, 1992, 63–76 | Zbl
[33] J. Rehmeyer, Drinking Up Math's Moonshine. String theory helps make monstrous mathematical connections, , Discover, November 30, 2015 (Top 100 Stories of 2015 #50) http://discovermagazine.com/2016/janfeb/50-drinking-up-maths-moonshine
[34] S. Reichard, “Schur rings over the elementary abelian group of order 64”, Sib. Electron. Math. Reports (to appear)
[35] B. Weisfeiler (ed.), On Construction and Identification of Graphs, Lecture Notes in Mathematics, 558, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | Zbl
[36] M. Ziv-Av, “Enumeration of Schur rings over small groups”, Computer Algebra in Scientific Computing, 16th International Workshop CASC 2014, Proceedings (Warsaw, Sept. 8–12, 2014), Lect. Notes Comput. Sci., 8660, eds. V. P. Gerdt et al., 2014, 491–500 | DOI | Zbl