Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1401-1409.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an analytical solution of problem of heat transfer in a long channel with a rectangular cross section. A rarefied gas flow trough cross section is studied on the basis of Williams kinetic equation in the whole range of the Knudsen number varying from the free molecular regime to the hydrodynamic one. A wide range of the aspect ratio is considered. The heat flow is calculated as a function of a constant pressure gradient supported in the channel.
Keywords: Boltzmann kinetic equation, Williams equation, model of diffuse reflection, analytical solutions, Knudsen number.
@article{SEMR_2016_13_a100,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical modeling of heat transfer process in a rectangular channel in the problem of {Poiseuille} flow},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1401--1409},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a100/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1401
EP  - 1409
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a100/
LA  - ru
ID  - SEMR_2016_13_a100
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1401-1409
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a100/
%G ru
%F SEMR_2016_13_a100
O. V. Germider; V. N. Popov. Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1401-1409. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a100/

[1] Yu. A. Koshmarov, Yu. A. Ryzhov, Applied dynamics of rarified gas, Mashinostroenie, M., 1977

[2] F. M. Sharipov, V. D. Seleznev, Motion of Rarefied Gases in Channels and Microchannels, UrO RAN, Yekaterinburg, 2008

[3] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of an isothermal flow in a long microchannel with rectangular cross section”, Comput. Math. Math. Phys., 50:7 (2010), 1221–1237 | DOI | MR | Zbl

[4] F. M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A, 17:5 (1999), 3062–3066 | DOI

[5] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Calculation of the gas mass and heat fluxes in a channel of rectangular section in the free regime”, Technical Physics, 61:6 (2016), 835–840 | DOI

[6] S. Naris, D. Valougeorgis, “Rarefied gas flow in a triangular duct based on a boundary fitted lattice”, Eur. J. Mech. B/Fluids, 27 (2008), 810–822 | DOI | MR | Zbl

[7] C. E. Siewert, D. Valougeorgis, “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, J. Quant. Spectrosc. Radiat. Transf., 72 (2002), 531–550 | DOI

[8] P. Taheri, M. Bahrami, “Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels”, Phys. Rev., 86 (2012), 1–9

[9] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI

[10] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Mathematical modeling of heat transfer processes in a long cylindrical channel”, Zh. SVMO, 17 (2015), 22–29

[11] V. A. Titarev, E. M. Shakhov, “Numerical analysis of the spiral Couette flow of a rarefied gas between coaxial cylinders”, Comput. Math. Math. Phys., 46 (2006), 505–513 | DOI | MR | Zbl

[12] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics V Fluids, 27 (2008), 335–345 | DOI | MR | Zbl

[13] S. Cercignani, “The method of elementary solutions for kinetic models with velocity-dependent collision frequency”, Annals of Physics, 40 (1966), 469–481 | DOI | MR

[14] M. N. Kogan, Rarefied gas dynamics. Kinetic theory, Nauka, M., 1967 | Zbl

[15] P. Courant, Partial Differential Equations, Mir, M., 1964 | Zbl

[16] A. V. Latyshev, A. A. Yushkanov, Analytic solution of boundary problems for kinetic equations, MGOU, M., 2004

[17] C. Siewert, F. Sharipov, “Model equations in rarefied gas dynamics: viscous-slip and thermal-slip coefficients”, Phys. Fluids, 14:12 (2002), 4123–4129 | DOI | MR | Zbl