On classes of analytic functions in a disk with a characteristic R.~Nevanlinny and $\alpha$-characteristic of weighted $L^p $ spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 150-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain restrictions on the weight function in the article studied classes of analytic functions in the disk, Nevanlinna's characteristic and $\alpha$-characteristic which belongs to the weighted $L^ p$ spaces.
Keywords: unit disk, analytic function, Nevanlinna characteristic function.
@article{SEMR_2015_12_a80,
     author = {F. A. Shamoyan and V. A. Bednazh and O. V. Karbanovich},
     title = {On classes of analytic functions in a disk with a characteristic {R.~Nevanlinny} and  $\alpha$-characteristic of weighted $L^p $ spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {150--167},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a80/}
}
TY  - JOUR
AU  - F. A. Shamoyan
AU  - V. A. Bednazh
AU  - O. V. Karbanovich
TI  - On classes of analytic functions in a disk with a characteristic R.~Nevanlinny and  $\alpha$-characteristic of weighted $L^p $ spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 150
EP  - 167
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a80/
LA  - ru
ID  - SEMR_2015_12_a80
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%A V. A. Bednazh
%A O. V. Karbanovich
%T On classes of analytic functions in a disk with a characteristic R.~Nevanlinny and  $\alpha$-characteristic of weighted $L^p $ spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 150-167
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a80/
%G ru
%F SEMR_2015_12_a80
F. A. Shamoyan; V. A. Bednazh; O. V. Karbanovich. On classes of analytic functions in a disk with a characteristic R.~Nevanlinny and  $\alpha$-characteristic of weighted $L^p $ spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 150-167. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a80/

[1] W. K. Hayman, Meromorfhia functions, Oxford, 1964 | MR

[2] M. M. Dzhrbashyan, “On the parametric representation of certain general classes of meromorphic functions in the unit circle”, Dokl. Akad Nauk SSSR, 157:5 (1964), 1024–1027 | MR | Zbl

[3] F.A. Shamoyan, “Parametric representation and description of the top sets of weighted classes of holomorphic functions in the disk”, Siberian Mathematical Journal, 40:6 (1999), 1422–1440 | DOI | MR | Zbl

[4] F. A. Shamoyan, E. N. Shubabko, Introduction to the theory of weighted $L^{p}$-classes of meromorphic functions, Bryansk State University, 2009

[5] I. Stein, Singular integrals and the differentiability properties of functions, Mir, M., 1973 | MR

[6] M. M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain, Nauka, M., 1966 | MR

[7] O. E. Antonenkova, F. A. Shamoyan, “The Cauchy transform of continuous linear functionals and projections on the weighted spaces of analytic functions”, Siberian Mathematical Journal, 46:6 (2005), 1208–1234 | DOI | MR | Zbl