Planar varieties of semigroups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 232-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the property of planarity of Cayley graphs for varieties of semigroups. It is proved that the variety of semigroups with zero multiplication $\mathrm{ var}\{xy=zt\}$, the variety of left zero semigroups $\mathrm{ var}\{xy=x\}$ and the variety $\mathrm{ var}\{xy=xz\}$ are the only non-trivial planar variety of semigroups. We find the ranks of planarity for some important series of varieties of semigroups.
Keywords: semigroup, Cayley graph, variety of semigroups, planar graph, rank of planarity.
@article{SEMR_2015_12_a8,
     author = {D. V. Solomatin},
     title = {Planar varieties of semigroups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {232--247},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a8/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - Planar varieties of semigroups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 232
EP  - 247
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a8/
LA  - ru
ID  - SEMR_2015_12_a8
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T Planar varieties of semigroups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 232-247
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a8/
%G ru
%F SEMR_2015_12_a8
D. V. Solomatin. Planar varieties of semigroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 232-247. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a8/

[1] S. I. Adian, Defining relations and algorithmic problems for groups and semigroups, Proc. Steklov Inst. Math., 85, 1966, 124 pp. (in Russian) | MR

[2] G. Birkhoff, “On the Structure of Abstract Algebras”, Proc. Camb. Phil. Soc., 31 (1935), 433–454 | DOI

[3] A. P. Biryukov, “Varieties of idempotent semigroups”, Algebra and Logic, 9:3 (1970), 255–273 (in Russian) | DOI | MR | Zbl

[4] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 1, American Mathematical Society, 1961 | MR | Zbl

[5] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 2, American Mathematical Society, 1967 | MR | Zbl

[6] P. M. Cohn, Universal Algebra, Harper and Row Publishers, 1965 | MR | Zbl

[7] V. A. Emelichev, O. I. Melnikov, V. I. Saravanov, R. I. Tyszkiewicz, Lectures on graph theory, Science, M., 1990 (in Russian) | MR

[8] T. Evans, “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | DOI | MR | Zbl

[9] C. Fennemore, “All varieties of bands”, Semigroup Forum, 1 (1970), 172–179 | DOI | MR | Zbl

[10] G. Gratzer, “Equational classes of lattices”, Duke Mathematical Journal, 33 (1966), 613–622 | DOI | MR | Zbl

[11] O. G. Kharlampovich, M. V. Sapir, “Algorithmic problems in varieties”, Internat. J. Algebra Comput., 5 (1995), 379–602 | DOI | MR | Zbl

[12] I. I. Melnik, “Description of some lattices of varieties of semigroups”, Izv. VUZ. Matematika, 7 (1972), 65–74 (in Russian) | MR | Zbl

[13] B. H. Neumann, “Identical relations in groups, I”, Math. Ann., 114 (1937), 506–525 | DOI | MR

[14] H. Neumann, Varieties of Groups, Springer-Verlag, New York, 1967 | MR | Zbl

[15] R. S. Pierce, Introduction to the Theory of Abstract Algebras, Holt, Rinehart and Winston, Inc., 1968, MR0227070 pp. | MR

[16] M. V. Sapir, “Algorithmic problems in varieties of semigroups”, Izv. VUZ. Matematika, 12 (1985), 71–74 (in Russian) | MR | Zbl

[17] M. V. Sapir, “Problems of Burnside type and the finite basis property in varieties of semigroups”, Izv. Akad. Nauk SSSR Ser. Mat., 2 (1987), 319–340 (in Russian) | MR | Zbl

[18] M. V. Sapir, E. V. Sukhanov, “Varieties of periodic semigroups”, Izv. VUZ. Matematika, 4 (1981), 48–55 (in Russian) | MR | Zbl

[19] L. N. Shevrin, “Identities in algebra”, Soros Educational J., 7 (1996), 111–118 (in Russian) | Zbl

[20] L. N. Shevrin, B. M. Vernikov, M. V. Volkov, “Lattices of semigroup varieties”, Izv. VUZ. Matematika, 3 (2009), 3–36 (in Russian) | MR | Zbl

[21] L. N. Shevrin, M. V. Volkov, “Identities of semigroups”, Izv. VUZ. Matematika, 11 (1985), 3–47 (in Russian) | MR | Zbl

[22] L. N. Shevrin, E. V. Sukhanov, “Structural aspects of the theory of varieties of semigroups”, Izv. VUZ. Matematika, 6 (1989), 3–39 (in Russian) | MR | Zbl

[23] D. V. Solomatin, “Direct products of cyclic semigroups admitting a planar Cayley graph”, Siberian Electronic Mathematical Reports, 3 (2006), 238–252 (in Russian) | MR | Zbl

[24] D. V. Solomatin, “Planarity ranks of varieties of commutative monoids”, Herald of Omsk University, 4, OmSU n.a. F. M. Dostoevsky, Omsk, 2012, 41–45 (in Russian)

[25] D. V. Solomatin, “About planarity ranks of varieties of commutative semigroups”, All-Russian Conference on Mathematics and Mechanics, dedicated to the 135th anniversary of Tomsk State University and the 65th anniversary of the Faculty of Mathematics and Mechanics, Book of Abstracts (Tomsk, 02 – 04 October, 2013), «Ivan Fedorov», Tomsk, 2013, P.35 (in Russian)