Three synthetical plots of analysis and geometry
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 679-687.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a short overview of the synthetical problems of analysis and geometry which are connected with multiple objective problems of convex geometry, the theory of linear inequalities, and Boolean valued analysis. Some attention is paid to the related historical-philosophical aspects of the problems that were inspired by A. D. Alexandrov, L. V. Kantorovich, and S. L. Sobolev.
Keywords: multiple objective isoperimetric-type problem, Urysohn problem, Leidenfrost effect, Farkas lemma, polyhedral Lagrange principle.
@article{SEMR_2015_12_a79,
     author = {S. S. Kutateladze},
     title = {Three synthetical plots of analysis and geometry},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {679--687},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a79/}
}
TY  - JOUR
AU  - S. S. Kutateladze
TI  - Three synthetical plots of analysis and geometry
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 679
EP  - 687
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a79/
LA  - ru
ID  - SEMR_2015_12_a79
ER  - 
%0 Journal Article
%A S. S. Kutateladze
%T Three synthetical plots of analysis and geometry
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 679-687
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a79/
%G ru
%F SEMR_2015_12_a79
S. S. Kutateladze. Three synthetical plots of analysis and geometry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 679-687. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a79/

[1] A. D. Alexandrov, Geometry and Applications, Nauka Publishers, Novosibirsk, 2006

[2] L. V. Kantorovich, Selected Works, v. 1; 2, Gordon and Breach Publishers, Amsterdam, 1996

[3] S. L. Sobolev, Selected Works, v. 1; 2, Sobolev Institute Press, Novosibirsk, 2006 | MR | Zbl

[4] G. Strang, “Maximum area with Minkowski measures of perimeter”, Proc. Royal Soc. Edinburg, 138:1 (2008), 189–199 | MR | Zbl

[5] S. S. Kutateladze, “Multiobjective problems of convex geometry”, Sib. Math. J., 50:5 (2009), 887–897 | DOI | MR | Zbl

[6] S. S. Kutateladze, “Multiple criteria problems over Minkowski balls”, J. Appl. Indust. Math., 7:2 (2013), 208–214 | Zbl

[7] S. S. Kutateladze, “The Farkas lemma revisited”, Sib. Math. J., 51:1 (2010), 78–87 | DOI | MR | Zbl

[8] S. S. Kutateladze, “The polyhedral Lagrange principle”, Sib. Math. J., 52:3 (2011), 484–486 | DOI | MR | Zbl

[9] V. I. Vernadsky, Essays on the Universal History of Science, Nauka Publishers, M., 1988

[10] J. Bair, P. Błaszczyk, R. Ely, V. Henry, V. Kanovei, K. Katz, M. Katz, S. Kutateladze, T. McGaffey, D. Schaps, D. Sherry, S. Shnider, Is mathematical history written by the victors?, Notices of the AMS, 60:7 (2013), 886–904 | MR

[11] S. L. Sobolev, “Wisdom of symbols”, Sib. Math. J., 49:5 (2008), 765–770 | DOI | MR | Zbl

[12] A. D. Alexandrov, Articles of Various Years, Nauka Publishers, Novosibirsk, 2008

[13] L. V. Kantorovich, Mathematical-Economic Articles, Nauka Publishers, Novosibirsk, 2011

[14] S. S. Kutateladze, Science and Its People, Southern Math. Inst., Vladikavkaz, 2010 | MR

[15] S. S. Kutateladze, Science at a Crossroads, Southern Math. Inst., Vladikavkaz, 2015