On splitting schemes of predictor-corrector type in mixed finite element method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 752-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we develop a previously proposed approach to constructing vector splitting schemes for heat transfer problem solved by mixed finite element method on rectangular meshes. As was shown numerically before, a particular flux splitting scheme based the alternating direction scheme for flux divergence has no convergence for some smooth test solutions. We provide theoretical analysis of the stability estimates for the scheme based on the eigensystem information. The main drawback of that particular flux splitting scheme is the nonzero component of the heat flux in the kernel of divergence operator. Based on the analysis and numerical experiments we suggest, explain and verify numerically that flux splitting schemes obtained from predictor-corrector schemes for flux divergence don’t have this drawback. The main conclusion is that due to the presence of simple and strong stability estimates one should prefer using predictor-corrector type of schemes for the heat flux rather than others.
Keywords: heat transfer, mixed finite element method, splitting schemes, a priori estimates, predictor-corrector.
@article{SEMR_2015_12_a76,
     author = {K. V. Voronin and Yu. M. Laevsky},
     title = {On splitting schemes of predictor-corrector type in mixed finite element method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {752--765},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/}
}
TY  - JOUR
AU  - K. V. Voronin
AU  - Yu. M. Laevsky
TI  - On splitting schemes of predictor-corrector type in mixed finite element method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 752
EP  - 765
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/
LA  - en
ID  - SEMR_2015_12_a76
ER  - 
%0 Journal Article
%A K. V. Voronin
%A Yu. M. Laevsky
%T On splitting schemes of predictor-corrector type in mixed finite element method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 752-765
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/
%G en
%F SEMR_2015_12_a76
K. V. Voronin; Yu. M. Laevsky. On splitting schemes of predictor-corrector type in mixed finite element method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 752-765. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/

[1] Voronin K. V., Laevsky Yu. M., “An approach to the construction of flow splitting schemes in the mixed finite element method”, Matem. Mod., 26:12 (2014), 33–47 (in Russian) | Zbl

[2] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[3] P. A. Raviart, J. M. Thomas, “A mixed finite element method for second order elliptic problems”, Lecture Notes in Mathematics, 606, Springer-Verlag, New York, 1977, 292–315 | DOI | MR

[4] G. I. Marchuk, “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. G. Ciarlet, J. L. Lions, Elsevier Science Publishers, B.V., North–Holland, 1990 | MR

[5] G. I. Marchuk, Metody rasshepleniya, Nauka, M., 1988 (in Russian) | MR

[6] N. N. Yanenko, The Method of Fractional Steps, Springer-Verlag, New York, 1971 | MR | Zbl

[7] K. V. Voronin, Yu. M. Laevsky, “On the stability of some flux splitting schemes”, Numerical Analysis and Applications, 8:2 (2015), 113–121 | DOI | Zbl

[8] D. W. Peaceman, H. H. Rachford (Jr.), “The numerical solution of parabolic and elliptic differential equations”, Journ. Soc. Industr. Appl. Math., 3:1 (1955), 28–42 | DOI | MR

[9] J. Douglas, J. E. Gunn, “A general formulation of alternating direction methods. Part 1. Hyperbolic and parabolic problems”, Numerische Mathematik, 6 (1964), 428–453 | DOI | MR | Zbl

[10] K. V. Voronin, Yu. M. Layevsky, “A New Approach to Constructing Splitting Schemes in Mixed FEM for Heat Transfer: A Priori Estimates”, Lecture Notes in Computer Science, 9045, 2015, 417–425 | DOI | Zbl

[11] P. E. Popov, A. A. Kalinkin, “The method of separation of variables in a problem with a saddle point”, Rus. J. Num. Math. Mod., 23:1 (2008), 97–106 | MR | Zbl

[12] T. Arbogast, C.-S. Huang, S.-M. Yang, “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | MR | Zbl

[13] A. A. Samarskii, A. V. Gulin, Stability of difference schemes, Nauka, M., 1973 (in Russian) | Zbl