Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a76, author = {K. V. Voronin and Yu. M. Laevsky}, title = {On splitting schemes of predictor-corrector type in mixed finite element method}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {752--765}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/} }
TY - JOUR AU - K. V. Voronin AU - Yu. M. Laevsky TI - On splitting schemes of predictor-corrector type in mixed finite element method JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 752 EP - 765 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/ LA - en ID - SEMR_2015_12_a76 ER -
%0 Journal Article %A K. V. Voronin %A Yu. M. Laevsky %T On splitting schemes of predictor-corrector type in mixed finite element method %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 752-765 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/ %G en %F SEMR_2015_12_a76
K. V. Voronin; Yu. M. Laevsky. On splitting schemes of predictor-corrector type in mixed finite element method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 752-765. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a76/
[1] Voronin K. V., Laevsky Yu. M., “An approach to the construction of flow splitting schemes in the mixed finite element method”, Matem. Mod., 26:12 (2014), 33–47 (in Russian) | Zbl
[2] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[3] P. A. Raviart, J. M. Thomas, “A mixed finite element method for second order elliptic problems”, Lecture Notes in Mathematics, 606, Springer-Verlag, New York, 1977, 292–315 | DOI | MR
[4] G. I. Marchuk, “Splitting and alternating direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. G. Ciarlet, J. L. Lions, Elsevier Science Publishers, B.V., North–Holland, 1990 | MR
[5] G. I. Marchuk, Metody rasshepleniya, Nauka, M., 1988 (in Russian) | MR
[6] N. N. Yanenko, The Method of Fractional Steps, Springer-Verlag, New York, 1971 | MR | Zbl
[7] K. V. Voronin, Yu. M. Laevsky, “On the stability of some flux splitting schemes”, Numerical Analysis and Applications, 8:2 (2015), 113–121 | DOI | Zbl
[8] D. W. Peaceman, H. H. Rachford (Jr.), “The numerical solution of parabolic and elliptic differential equations”, Journ. Soc. Industr. Appl. Math., 3:1 (1955), 28–42 | DOI | MR
[9] J. Douglas, J. E. Gunn, “A general formulation of alternating direction methods. Part 1. Hyperbolic and parabolic problems”, Numerische Mathematik, 6 (1964), 428–453 | DOI | MR | Zbl
[10] K. V. Voronin, Yu. M. Layevsky, “A New Approach to Constructing Splitting Schemes in Mixed FEM for Heat Transfer: A Priori Estimates”, Lecture Notes in Computer Science, 9045, 2015, 417–425 | DOI | Zbl
[11] P. E. Popov, A. A. Kalinkin, “The method of separation of variables in a problem with a saddle point”, Rus. J. Num. Math. Mod., 23:1 (2008), 97–106 | MR | Zbl
[12] T. Arbogast, C.-S. Huang, S.-M. Yang, “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | MR | Zbl
[13] A. A. Samarskii, A. V. Gulin, Stability of difference schemes, Nauka, M., 1973 (in Russian) | Zbl