Mathematical model of water-oil displacement in fractured porous medium
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 743-751.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the mixed finite element method the numerical model for two-phase incompressible fluid filtration is designed in the terms "velocity-pressure-saturation". The main difficulty of the model is caused by fractured porous medium. Our approach allows to resolve difficulties wtith boundary condition degeneration for the saturation.
Keywords: Fractured porous medium, Filtration model
Mots-clés : FEM.
@article{SEMR_2015_12_a75,
     author = {A. A. Kalinkin and Yu. M. Laevsky},
     title = {Mathematical model of water-oil displacement in fractured porous medium},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {743--751},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a75/}
}
TY  - JOUR
AU  - A. A. Kalinkin
AU  - Yu. M. Laevsky
TI  - Mathematical model of water-oil displacement in fractured porous medium
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 743
EP  - 751
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a75/
LA  - en
ID  - SEMR_2015_12_a75
ER  - 
%0 Journal Article
%A A. A. Kalinkin
%A Yu. M. Laevsky
%T Mathematical model of water-oil displacement in fractured porous medium
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 743-751
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a75/
%G en
%F SEMR_2015_12_a75
A. A. Kalinkin; Yu. M. Laevsky. Mathematical model of water-oil displacement in fractured porous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 743-751. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a75/

[1] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, The motion of fluids and gases in natural strata, Nedra Publishing House, M., 1984

[2] R. I. Nigmatulin, Dynamics of Multiphase Media, v. II, Nauka, M., 1987

[3] A. N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific, New Jersey–London–Hong Kong, 1994 | Zbl

[4] K. Aziz, A. Settari, Petrolium Reservoir Simulation, Blitzprint Ltd., Calgary, Alberta, 2002

[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[6] R. Ewing, “Mathematical modeling and simulation for fluid flow in porous media”, Mathematical Modelling, 13:2 (2001), 117–127 | MR | Zbl

[7] E. A. Novikov, G. V. Demidov, “An economic algorithm for the integration of nonrigid systems of ordinary differential equations”, Numerical methods in mathematical physics, v. 4, Novosibirsk, 1979, 69–83 | Zbl

[8] L. V. Knaub, Yu. M. Laevsky, E. A. Novikov, “Variable order and step integrating algorithm based on the explicit two-stage Runge–Kutta method”, Sib. Zh. Vychisl. Mat., 10:2 (2007), 177–185 | Zbl

[9] P. E. Popov, A. A. Kalinkin, “The method of separation of variables in a problem with a saddle point”, Russian J. Numer. Anal. Math. Model., 23:1 (2008), 97–106 | DOI | MR | Zbl

[10] Yu. M. Laevsky, P. E. Popov, A. A. Kalinkin, “Simulation of two-phase fluid filtration by mixed finite element method”, Matem. Mod., 22:3 (2010), 74–90 | MR | Zbl

[11] M. A. Kornilina, E. A. Samarskaya et al., “Simulation of oil reservoir exploitation on parallel computer systems”, Matem. Mod., 7:2 (1995), 35–48 | MR | Zbl

[12] J. E. Warren, P. E. Root, The behavior of naturally fractured reservoirs, 1963

[13] V. V. Voevodin, Y. A. Kuznetsov, Matrices and calculations, Nayka, M., 1984 | MR