A modified Galerkin method for Vragov problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider Vragov problem for the equation of mixed type. We construct an approximate solution by solving a boundary value problem for the system of third-order ODE. The obtained error estimate for modified Galerkin method through the regularization parameter and the eigenvalues of the Dirichlet problem for the Laplas equation in the variables $x\in R^n$.
Keywords:
equation of mixed type, approximate solution, modified Galerkin method, inequality, regularization.
@article{SEMR_2015_12_a74,
author = {I. E. Egorov and I. M. Tikhonova},
title = {A modified {Galerkin} method for {Vragov} problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {732--742},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/}
}
I. E. Egorov; I. M. Tikhonova. A modified Galerkin method for Vragov problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/