A modified Galerkin method for Vragov problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider Vragov problem for the equation of mixed type. We construct an approximate solution by solving a boundary value problem for the system of third-order ODE. The obtained error estimate for modified Galerkin method through the regularization parameter and the eigenvalues of the Dirichlet problem for the Laplas equation in the variables $x\in R^n$.
Keywords: equation of mixed type, approximate solution, modified Galerkin method, inequality, regularization.
@article{SEMR_2015_12_a74,
     author = {I. E. Egorov and I. M. Tikhonova},
     title = {A modified {Galerkin} method for {Vragov} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {732--742},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/}
}
TY  - JOUR
AU  - I. E. Egorov
AU  - I. M. Tikhonova
TI  - A modified Galerkin method for Vragov problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 732
EP  - 742
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/
LA  - ru
ID  - SEMR_2015_12_a74
ER  - 
%0 Journal Article
%A I. E. Egorov
%A I. M. Tikhonova
%T A modified Galerkin method for Vragov problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 732-742
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/
%G ru
%F SEMR_2015_12_a74
I. E. Egorov; I. M. Tikhonova. A modified Galerkin method for Vragov problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/