A modified Galerkin method for Vragov problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider Vragov problem for the equation of mixed type. We construct an approximate solution by solving a boundary value problem for the system of third-order ODE. The obtained error estimate for modified Galerkin method through the regularization parameter and the eigenvalues of the Dirichlet problem for the Laplas equation in the variables $x\in R^n$.
Keywords: equation of mixed type, approximate solution, modified Galerkin method, inequality, regularization.
@article{SEMR_2015_12_a74,
     author = {I. E. Egorov and I. M. Tikhonova},
     title = {A modified {Galerkin} method for {Vragov} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {732--742},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/}
}
TY  - JOUR
AU  - I. E. Egorov
AU  - I. M. Tikhonova
TI  - A modified Galerkin method for Vragov problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 732
EP  - 742
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/
LA  - ru
ID  - SEMR_2015_12_a74
ER  - 
%0 Journal Article
%A I. E. Egorov
%A I. M. Tikhonova
%T A modified Galerkin method for Vragov problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 732-742
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/
%G ru
%F SEMR_2015_12_a74
I. E. Egorov; I. M. Tikhonova. A modified Galerkin method for Vragov problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 732-742. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a74/

[1] F. C. Tricomi, Linear Equations of Mixed Type, Russian translation, Gostekhizdat, M., 1947

[2] F. C. Tricomi, Lectures on Partial Differential Equations, Russian translation, Izdat. Inostr. Lit., M., 1957

[3] S. Gellerstedt, Sur un probleme aux limites pour une équation lineaire aux derivées partielles du second ordre de tipe mixte, These, Uppsala, 1935

[4] A. V. Bitsadze, Equations of Mixed Type, Akad. Nauk SSSR, M., 1959 (in Russian) | Zbl

[5] V. N. Vragov, Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk Univ., Novosibirsk, 1983

[6] V. N. Vragov, “On the theory of boundary-value problems for mixed-type equations in space”, Differentsial'nye Uravneniya, 13:6 (1977), 1098–1105 | MR | Zbl

[7] M. M. Smirnov, Equations of Mixed Type, Nauka, M., 1970 (in Russian) | MR

[8] M. S. Salakhitdinov, Equations of Mixed-Composite Type, Fan, Tashkent, 1974 (in Russian) | MR

[9] I. E. Egorov, V. E. Fedorov, Higher-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr Sibirsk. Otdel. Ros. Akad. Nauk, Novosibirsk, 1995 (in Russian) | MR

[10] I. E. Egorov, V. E. Fedorov, Introduction to the Theory of Mixed Type Equations of Second Order, Yakutsk Univ., Yakutsk, 1998 (in Russian)

[11] E. I. Moiseev, Equations of Mixed Type with a Spectral Parameter, Moscow Univ., M., 1988 (in Russian) | MR | Zbl

[12] N. A. Lar'kin, “One class of nonlinear equations of mixed type”, Siberian Math. J., 19:6 (1978), 919–924 | DOI | MR

[13] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, M., 1970 (in Russian) | MR

[14] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc., 1985 | MR | Zbl

[15] A. V. Dzhishkariani, “On the rate of convergence of the Bubnov–Galerkin method”, USSR Comput. Math. Math. Phys., 4:2 (1964), 183–189 (in Russian) | DOI

[16] P. V. Vinogradova, A. G. Zarubin, “Error estimates for the Galerkin method as applied to time-dependent equations”, Comput. Math. Math. Phys., 49:9 (2009), 1567–1575 | DOI | MR | Zbl

[17] I. E. Egorov, I. M. Tikhonova, “Application of the the stationary Galerkin method for a mixed-type equation”, Mat. Zametki YaGU, 19:2 (2012), 20–28 (in Russian) | Zbl

[18] I. E. Egorov, I. M. Tikhonova, “About convergence speed of the stationary Galerkin method for the mixed type equation”, Vestnik YuUrGU Ser. Mat. Model. Progr., 14 (2012), 53–58 (in Russian)

[19] I. E. Egorov, “On the modified Galerkin method for a forward-backward parabolic equation”, Uzbek. Mat. Zh., 3 (2013), 33–40 (in Russian)

[20] I. E. Egorov, I. M. Tikhonova, “Application of the modified Galerkin method for a mixed-type equation”, Mat. Zametki SVFU, 4 (2014), 14–19