Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion~$\mathrm{D_{4h}}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 457-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the dihedral group of rotations with inversion $\mathrm{D_{4h}}$ is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry group up to the 29th order of accuracy.
Keywords: numerical integration, dihedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2015_12_a70,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion~$\mathrm{D_{4h}}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {457--464},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a70/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion~$\mathrm{D_{4h}}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 457
EP  - 464
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a70/
LA  - ru
ID  - SEMR_2015_12_a70
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion~$\mathrm{D_{4h}}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 457-464
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a70/
%G ru
%F SEMR_2015_12_a70
A. S. Popov. Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion~$\mathrm{D_{4h}}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 457-464. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a70/

[1] S. L. Sobolev, “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovanii konechnykh grupp vraschenii”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl

[2] S. L. Sobolev, “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sib. mat. zhurn., 3:5 (1962), 769–796 | MR | Zbl

[3] A. D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl

[4] V. I. Lebedev, “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | MR | Zbl

[5] V. I. Lebedev, “O kvadraturakh na sfere”, Zhurn. vychisl. matem. i matem. fiz., 16:2 (1976), 293–306 | MR | Zbl

[6] V. I. Lebedev, “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sib. mat. zhurn., 18:1 (1977), 132–142 | MR | Zbl

[7] V. I. Lebedev, D. N. Laikov, “Kvadraturnaya formula dlya sfery 131-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 366:6 (1999), 741–745 | MR | Zbl

[8] S. I. Konyaev, “Kvadratury tipa Gaussa dlya sfery, invariantnye otnositelno gruppy ikosaedra s inversiei”, Mat. zametki, 25:4 (1979), 629–634 | MR | Zbl

[9] S. I. Konyaev, “Formuly chislennogo integrirovaniya na sfere”, Teoremy vlozheniya i ikh prilozheniya, Trudy seminara akad. S. L. Soboleva, 1, Novosibirsk, 1982, 75–82 | MR | Zbl

[10] S. I. Konyaev, “On invariant quadrature formulae for a sphere”, Russ. J. Numer. Anal. Math. Modelling, 10:1 (1995), 41–47 | DOI | MR | Zbl

[11] I. P. Mysovskikh, Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR

[12] A. S. Popov, “Kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i matem. fiz., 35:3 (1995), 459–466 | MR | Zbl

[13] A. S. Popov, “Kubaturnye formuly vysokikh poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i matem. fiz., 36:4 (1996), 5–9 | MR | Zbl

[14] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii oktaedra”, Zhurn. vychisl. matem. i matem. fiz., 38:1 (1998), 34–41 | MR

[15] A. S. Popov, “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra”, Sib. zhurn. vychisl. matem., 5:4 (2002), 367–372 | Zbl

[16] A. S. Popov, “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra s inversiei”, Sib. zhurn. vychisl. matem., 8:2 (2005), 143–148 | MR | Zbl

[17] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii ikosaedra”, Sib. zhurn. vychisl. matem., 11:4 (2008), 433–440 | Zbl

[18] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy tetraedra s inversiei”, Sibirskie elektronnye matematicheskie izvestiya, 11 (2014), 372–379

[19] A. S. Popov, “Kubaturnye formuly chetvertogo i sedmogo poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy vraschenii kvadrata vokrug polyarnoi osi”, Vychislitelnye metody i tekhnologiya resheniya zadach matematicheskoi fiziki, Sbornik nauchnykh trudov, VTs SO RAN, Novosibirsk, 1993, 47–53 | MR

[20] A. S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl

[21] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii diedra s inversiei $D_{6h}$”, Sib. zhurn. vychisl. matem., 16:1 (2013), 57–62 | Zbl

[22] A. N. Kazakov, V. I. Lebedev, “Kvadraturnye formuly tipa Gaussa dlya sfery, invariantnye otnositelno gruppy diedra”, Trudy MIRAN, 203, Nauka, M., 1994, 100–112 | MR | Zbl

[23] F. Klein, Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Editorial URSS, M., 2004

[24] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika, Nauka, M., 1989 | MR

[25] V. A. Ditkin, “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl

[26] J. Albrecht, L. Collatz, “Zur numerischen Auswertung mehrdimensionaler Integrale”, Z. angew. Math. Mech., 38:1/2 (1958), 1–15 | DOI | MR | Zbl