On the spectrum of a three-particle model operator on a lattice with non-local potentials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184

Voir la notice de l'article provenant de la source Math-Net.Ru

A model operator $H$ associated to a system of three particles on a ${\rm d}$-dimensional lattice that interact via non-local potentials is considered. The channel operators are identified. An analogue of the Faddeev equation for the eigenfunctions of $H$ is constructed and the spectrum of $H$ is described. The location of the essential spectrum of $H$ is described by the spectrum of channel operators. It is shown that the essential spectrum of $H$ consists the union of at most $2n+1$ bounded closed intervals, where $n$ is the rank of the kernel of non-local interaction operators. The upper bound of the spectrum of $H$ is found. The lower bound of the essential spectrum of $H$ for the case ${\rm d}=1$ is estimated.
Keywords: model operator, discrete Schrödinger operator, non-local interaction operators, Hubbard model, channel operator, Hilbert–Schmidt class, Faddeev equation, essential and discrete spectrum.
@article{SEMR_2015_12_a69,
     author = {T. Kh. Rasulov and Z. D. Rasulova},
     title = {On the spectrum of a three-particle model operator on a lattice with non-local potentials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {168--184},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/}
}
TY  - JOUR
AU  - T. Kh. Rasulov
AU  - Z. D. Rasulova
TI  - On the spectrum of a three-particle model operator on a lattice with non-local potentials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 168
EP  - 184
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/
LA  - ru
ID  - SEMR_2015_12_a69
ER  - 
%0 Journal Article
%A T. Kh. Rasulov
%A Z. D. Rasulova
%T On the spectrum of a three-particle model operator on a lattice with non-local potentials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 168-184
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/
%G ru
%F SEMR_2015_12_a69
T. Kh. Rasulov; Z. D. Rasulova. On the spectrum of a three-particle model operator on a lattice with non-local potentials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/