On the spectrum of a three-particle model operator on a lattice with non-local potentials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184
Voir la notice de l'article provenant de la source Math-Net.Ru
A model operator $H$ associated to a system of three particles on a ${\rm d}$-dimensional lattice that interact via non-local potentials is considered. The channel operators are identified. An analogue of the Faddeev equation for the eigenfunctions of $H$ is constructed and the spectrum of $H$ is described. The location of the essential spectrum of $H$ is described by the spectrum of channel operators. It is shown that the essential spectrum of $H$ consists the union of at most $2n+1$ bounded closed intervals, where $n$ is the rank of the kernel of non-local interaction operators. The upper bound of the spectrum of $H$ is found. The lower bound of the essential spectrum of $H$ for the case ${\rm d}=1$ is estimated.
Keywords:
model operator, discrete Schrödinger operator, non-local interaction operators, Hubbard model, channel operator, Hilbert–Schmidt class, Faddeev equation, essential and discrete spectrum.
@article{SEMR_2015_12_a69,
author = {T. Kh. Rasulov and Z. D. Rasulova},
title = {On the spectrum of a three-particle model operator on a lattice with non-local potentials},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {168--184},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/}
}
TY - JOUR AU - T. Kh. Rasulov AU - Z. D. Rasulova TI - On the spectrum of a three-particle model operator on a lattice with non-local potentials JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 168 EP - 184 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/ LA - ru ID - SEMR_2015_12_a69 ER -
%0 Journal Article %A T. Kh. Rasulov %A Z. D. Rasulova %T On the spectrum of a three-particle model operator on a lattice with non-local potentials %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 168-184 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/ %G ru %F SEMR_2015_12_a69
T. Kh. Rasulov; Z. D. Rasulova. On the spectrum of a three-particle model operator on a lattice with non-local potentials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/