On the spectrum of a three-particle model operator on a lattice with non-local potentials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model operator $H$ associated to a system of three particles on a ${\rm d}$-dimensional lattice that interact via non-local potentials is considered. The channel operators are identified. An analogue of the Faddeev equation for the eigenfunctions of $H$ is constructed and the spectrum of $H$ is described. The location of the essential spectrum of $H$ is described by the spectrum of channel operators. It is shown that the essential spectrum of $H$ consists the union of at most $2n+1$ bounded closed intervals, where $n$ is the rank of the kernel of non-local interaction operators. The upper bound of the spectrum of $H$ is found. The lower bound of the essential spectrum of $H$ for the case ${\rm d}=1$ is estimated.
Keywords: model operator, discrete Schrödinger operator, non-local interaction operators, Hubbard model, channel operator, Hilbert–Schmidt class, Faddeev equation, essential and discrete spectrum.
@article{SEMR_2015_12_a69,
     author = {T. Kh. Rasulov and Z. D. Rasulova},
     title = {On the spectrum of a three-particle model operator on a lattice with non-local potentials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {168--184},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/}
}
TY  - JOUR
AU  - T. Kh. Rasulov
AU  - Z. D. Rasulova
TI  - On the spectrum of a three-particle model operator on a lattice with non-local potentials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 168
EP  - 184
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/
LA  - ru
ID  - SEMR_2015_12_a69
ER  - 
%0 Journal Article
%A T. Kh. Rasulov
%A Z. D. Rasulova
%T On the spectrum of a three-particle model operator on a lattice with non-local potentials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 168-184
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/
%G ru
%F SEMR_2015_12_a69
T. Kh. Rasulov; Z. D. Rasulova. On the spectrum of a three-particle model operator on a lattice with non-local potentials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 168-184. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a69/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[2] G. M. Zhislin, “Issledovanie spektra operatora Shredingera dlya sistemy mnogikh chastits”, Trudy Moskovskogo matematicheskogo obschestva, 9, 1960, 81–120 | MR | Zbl

[3] W. Hunziker, “On the spectra of Schrödinger multi-particle Hamiltonians”, Helvetica Physica Acta, 39 (1966), 451–462 | MR | Zbl

[4] S. N. Lakaev, M. E. Muminov, “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, Teoreticheskaya i matematicheskaya fizika, 135:3 (2003), 478–503 | DOI | MR | Zbl

[5] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices”, Mathematische Nachrichten, 280:7 (2007), 699–716 | DOI | MR | Zbl

[6] D. Mattis, “The few-body problem on a lattice”, Reviews of Modern Physics, 58:2 (1986), 361–379 | DOI | MR

[7] B. V. Karpenko, V. V. Dyakin, G. A. Budrina, “Dva elektrona v modeli Khabbarda”, Fizika metallov i metallovedenie, 61:4 (1986), 702–706

[8] Yu. A. Izyumov, Yu. N. Skryabin, Statisticheskaya mekhanika magnitno-uporyadochennykh sistem, Nauka, M., 1974

[9] V. Kheine, M. Koen, D. Ueir, Teoriya psevdopotentsiala, Mir, M., 1973

[10] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices”, Russian Journal of Mathematical Physics, 14:4 (2007), 377–387 | DOI | MR | Zbl

[11] S. Albeverio, S. N. Lakaev, R. Kh. Djumanova, “The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles”, Reports on Mathematical Physics, 63:3 (2009), 359–380 | DOI | MR | Zbl

[12] T. Kh. Rasulov, “Asimptotika diskretnogo spektra odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Teoreticheskaya i matematicheskaya fizika, 163:1 (2010), 34–44 | DOI | MR | Zbl

[13] T. Kh. Rasulov, “Suschestvennyi spektr odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Teoreticheskaya i matematicheskaya fizika, 166:1 (2011), 95–109 | DOI | MR | Zbl

[14] Z. D. Rasulova, “Investigations of the essential spectrum of a model operator associated to a system of three particles on a lattice”, Journal of Pure and Applied Mathematics: Advances and Applications, 11:1 (2014), 37–41 | MR

[15] Yu. Kh. Eshkabilov, “Effekt Efimova dlya odnogo modelnogo «trekhchastichnogo» diskretnogo operatora Shredingera”, Teoreticheskaya i matematicheskaya fizika, 164:1 (2010), 78–87 | DOI | Zbl

[16] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izdatelstvo LGU, L., 1980 | MR