Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a67, author = {M. A. Sultanov}, title = {Stability of three-layer difference scheme}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {28--44}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/} }
M. A. Sultanov. Stability of three-layer difference scheme. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 28-44. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/
[1] L. A. Chudov, “Raznostnye skhemy i nekorrektnye zadachi dlya uravnenii s chastnymi proizvodnymi”, Vychislitelnye metody i programmirovanie, 8 (1967), 34–62 | Zbl
[2] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[3] P. N. Vabischevich, “SM-ustoichivost operatorno-raznostnykh skhem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:6 (2012), 1002–1009 | MR | Zbl
[4] P. N. Vabischevich, “Faktorizovannye SM-ustoichivye dvukhsloinye skhemy”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:11 (2010), 1919–1925 | MR | Zbl
[5] A. L. Bukhgeim, “Ob ustoichivosti raznostnykh skhem dlya nekorrektnykh zadach”, Dokl. AN SSSR, 270:1 (1983), 26–28 | MR | Zbl
[6] A. L. Bukhgeim, Raznostnye metody resheniya nekorrektnykh zadach, VTs SO AN SSSR, Novosibirsk, 1986 | MR
[7] M. A. Bektemesov, “Ustoichivost trekhsloinoi raznostnoi skhemy dlya nekorrektnykh zadach Koshi”, Metody resheniya obratnykh zadach, IM SO AN SSSR, Novosibirsk, 1990, 45–54 | MR
[8] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009
[9] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1983
[10] L. Beilina, M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem”, SIAM J. Sci. Comp., 31 (2008), 478–509 | DOI | MR | Zbl
[11] S. I. Kabanikhin, M. A. Shishlenin, “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, J. Inverse and Ill-Posed Problems, 18 (2011), 979–995 | MR
[12] A. L. Bukhgeim, “Mnogomernye obratnye zadachi spektralnogo analiza”, Dokl. AN SSSR, 284:1 (1985), 21–24 | MR | Zbl
[13] A. L. Bukhgeim, Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR
[14] A. L. Bukhgeim, “Recovering a potential from Cauchy data in the two-dimensional case”, J. Inverse and Ill-Posed Problems, 16:1 (2008), 19–33 | DOI | MR | Zbl
[15] M. A. Sultanov, “Ob ustoichivosti vosstanovleniya dvumernogo potentsiala v uravnenii Shredingera”, Metody resheniya obratnykh zadach, IM SO AN SSSR, Novosibirsk, 1990, 121–130 | MR