Stability of three-layer difference scheme
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 28-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of a three-layer difference scheme with two weights approximating the ill-posed Cauchy problem for second order differential equation with an unbounded, both above and below the self-adjoint operator in the main part are considered. Based on the factorization method and application variants weight difference of a priori estimates of Carleman type conditions unconditional stability of the scheme has been obtained. Application of the above theorem to construct unconditionally stable difference schemes for the one-dimensional coefficient inverse problem of determining the potential in the Schrodinger equation is considered.
Keywords: finite-difference scheme, stability, the difference operator, weighted a priori estimates of Carleman type, inverse problem, eigenvalues, eigenfunctions.
@article{SEMR_2015_12_a67,
     author = {M. A. Sultanov},
     title = {Stability of three-layer difference scheme},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {28--44},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/}
}
TY  - JOUR
AU  - M. A. Sultanov
TI  - Stability of three-layer difference scheme
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 28
EP  - 44
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/
LA  - ru
ID  - SEMR_2015_12_a67
ER  - 
%0 Journal Article
%A M. A. Sultanov
%T Stability of three-layer difference scheme
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 28-44
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/
%G ru
%F SEMR_2015_12_a67
M. A. Sultanov. Stability of three-layer difference scheme. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 28-44. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a67/

[1] L. A. Chudov, “Raznostnye skhemy i nekorrektnye zadachi dlya uravnenii s chastnymi proizvodnymi”, Vychislitelnye metody i programmirovanie, 8 (1967), 34–62 | Zbl

[2] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[3] P. N. Vabischevich, “SM-ustoichivost operatorno-raznostnykh skhem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:6 (2012), 1002–1009 | MR | Zbl

[4] P. N. Vabischevich, “Faktorizovannye SM-ustoichivye dvukhsloinye skhemy”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:11 (2010), 1919–1925 | MR | Zbl

[5] A. L. Bukhgeim, “Ob ustoichivosti raznostnykh skhem dlya nekorrektnykh zadach”, Dokl. AN SSSR, 270:1 (1983), 26–28 | MR | Zbl

[6] A. L. Bukhgeim, Raznostnye metody resheniya nekorrektnykh zadach, VTs SO AN SSSR, Novosibirsk, 1986 | MR

[7] M. A. Bektemesov, “Ustoichivost trekhsloinoi raznostnoi skhemy dlya nekorrektnykh zadach Koshi”, Metody resheniya obratnykh zadach, IM SO AN SSSR, Novosibirsk, 1990, 45–54 | MR

[8] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009

[9] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1983

[10] L. Beilina, M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem”, SIAM J. Sci. Comp., 31 (2008), 478–509 | DOI | MR | Zbl

[11] S. I. Kabanikhin, M. A. Shishlenin, “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, J. Inverse and Ill-Posed Problems, 18 (2011), 979–995 | MR

[12] A. L. Bukhgeim, “Mnogomernye obratnye zadachi spektralnogo analiza”, Dokl. AN SSSR, 284:1 (1985), 21–24 | MR | Zbl

[13] A. L. Bukhgeim, Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR

[14] A. L. Bukhgeim, “Recovering a potential from Cauchy data in the two-dimensional case”, J. Inverse and Ill-Posed Problems, 16:1 (2008), 19–33 | DOI | MR | Zbl

[15] M. A. Sultanov, “Ob ustoichivosti vosstanovleniya dvumernogo potentsiala v uravnenii Shredingera”, Metody resheniya obratnykh zadach, IM SO AN SSSR, Novosibirsk, 1990, 121–130 | MR