Boundary value problems for certain classes of high order composite type equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 842-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability questions for boundary and initial-boundary value problems for some classes of high order composite-type equations are studied and, as a result, the existence and uniqueness of regular solutions is proved.
Mots-clés : Sobolev type equation, existence
Keywords: boundary value problem, regular solutions, uniqueness, a priori estimates.
@article{SEMR_2015_12_a64,
     author = {A. I. Kozhanov and N. R. Pinigina},
     title = {Boundary value problems for certain classes of high order composite type equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {842--853},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a64/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - N. R. Pinigina
TI  - Boundary value problems for certain classes of high order composite type equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 842
EP  - 853
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a64/
LA  - ru
ID  - SEMR_2015_12_a64
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A N. R. Pinigina
%T Boundary value problems for certain classes of high order composite type equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 842-853
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a64/
%G ru
%F SEMR_2015_12_a64
A. I. Kozhanov; N. R. Pinigina. Boundary value problems for certain classes of high order composite type equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 842-853. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a64/

[1] Kh. Ikezi, “Eksperimentalnoe issledovanie solitonov v plazme”, Solitony v deistvii, Mir, M., 1981, 163–184 | Zbl

[2] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[4] S. Ya. Yakubov, Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985 | Zbl

[5] V. N. Vragov, “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa”, Differentsialnye uravneniya, 13:6 (1976), 1098–1105

[6] V. N. Vragov, “O postanovke i razreshimosti kraevykh zadach dlya uravnenii smeshanno-sostavnogo tipa”, Matematicheskii analiz i smezhnye voprosy matematiki, Nauka, Novosibirsk, 1978, 5–13 | MR

[7] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, Izd-vo VTs SO RAN, Novosibirsk, 1995 | MR

[8] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 MR2009753 | MR | Zbl

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR | Zbl

[10] A. G. Sveshnikov, Yu. D. Pletner, M. O. Korpusov, A. B. Alshin, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[11] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., pererab., Nauka, M., 1973 | MR

[12] O. A. Ladyzhenskaya, “Ob integralnykh otsenkakh skhodimosti priblizhennykh metodov i resheniyakh v funktsionalakh dlya lineinykh ellipticheskikh operatorov”, Vestnik LGU, seriya matem., mekh., astr., 13:2 (1958), 60–69 | MR | Zbl

[13] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR