Mots-clés : code distance
@article{SEMR_2015_12_a58,
author = {S. V. Avgustinovich and O. G. Parshina},
title = {On vectors of minimal support in transitive linear spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {960--966},
year = {2015},
volume = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a58/}
}
S. V. Avgustinovich; O. G. Parshina. On vectors of minimal support in transitive linear spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 960-966. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a58/
[1] A. Vardy, “Algoritmic complexity in coding theory and the minimum distance problem”, STOC '97 (El Paso, TX), ACM, New York, 1999, 92–109 (electronic) | MR | Zbl
[2] E. R. Berlekamp, R. J. McEliece, H. C. A. van Tilborg, “On the inherent intractability of certain coding problems”, IEEE Trans. Inform. Theory, 24 (1978), 384–386 | DOI | MR | Zbl
[3] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs. Theory and Application, Second edition, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982, 368 pp. | MR
[4] M. Dinitz, “Full rank tilings of finite abelian groups”, SIAM J. Discrete Math., 20 (2006), 160–170 | DOI | MR | Zbl
[5] D. K. Zhukov, “Tilings of $p$-ary cyclic groups”, Siberian Electronic Mathematical Reports, 10 (2013), 562–565 | MR | Zbl