Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a52, author = {A. A. Valuzhenich}, title = {On permutation complexity of fixed points of some nonuniform binary morphisms}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {64--79}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a52/} }
TY - JOUR AU - A. A. Valuzhenich TI - On permutation complexity of fixed points of some nonuniform binary morphisms JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 64 EP - 79 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a52/ LA - ru ID - SEMR_2015_12_a52 ER -
A. A. Valuzhenich. On permutation complexity of fixed points of some nonuniform binary morphisms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 64-79. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a52/
[1] S. V. Avgustinovich, “The number of distinct subwords of fixed length in the Morse–Hedlund sequence”, Sibirsk. zhurnal issledovaniya operatsii, 1:2 (1994), 3–7 | MR | Zbl
[2] S. V. Avgustinovich, A. Frid, T. Kamae, P. Salimov, “Infinite permutations of lowest maximal pattern complexity”, Theoretical Computer Science, 412 (2011), 2911–2921 | DOI | MR | Zbl
[3] S. V. Avgustinovich, S. Kitaev, A. Pyatkin, A. Valyuzhenich, “On squarefree permutations”, Journal of Automata, Languages and Combinatorics, 16:1 (2011), 3–10 | MR
[4] J. Cassaigne, “Complexité et facteurs spéciaux”, Bull. Belg. Math. Soc., 4 (1997), 67–88 | MR | Zbl
[5] D. G. Fon-Der-Flaass, A. E. Frid, “On periodicity and low complexity of infinite permutations”, European J. Combin., 28:8 (2007), 2106–2114 | DOI | MR | Zbl
[6] M. A. Makarov, “On permutations generated by infinite binary words”, Sib. Elektron. Mat. Izv., 3 (2006), 304–311 (in Russian) | MR | Zbl
[7] M. A. Makarov, “On the permutations generated by the Sturmian words”, Sib. Math. J., 50:3 (2009), 674–680 | DOI | MR | Zbl
[8] A. Valyuzhenich, “Permutation complexity of the fixed points of some uniform binary morphisms”, EPTCS, 63 (2011), 257–264 | DOI
[9] S. Widmer, “Permutation complexity of the Thue-Morse word”, Adv. in Appl. Math., 47:2 (2011), 309–329 | DOI | MR | Zbl