Extremal properties for triangulation based on empty convex set condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 991-997.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest to consider the empty condition for the special family of convex sets. For the given finite set $P\subset \mathbb{R}^n$ we shall say that empty condition for convex set $B\subset \mathbb{R}^n$ is fulfilled if $P\cap B=P\cap \partial B$. This condition is a generalization of the classic Delaunay empty sphere condition. We prove some extremal properties for the corresponding triangulations.
Mots-clés : triangulation, Delaunay triangulation
Keywords: convex set, convex hull, empty sphere condition.
@article{SEMR_2015_12_a51,
     author = {V. A. Klyachin},
     title = {Extremal properties for triangulation based on empty convex set condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {991--997},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Extremal properties for triangulation based on empty convex set condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 991
EP  - 997
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/
LA  - ru
ID  - SEMR_2015_12_a51
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Extremal properties for triangulation based on empty convex set condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 991-997
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/
%G ru
%F SEMR_2015_12_a51
V. A. Klyachin. Extremal properties for triangulation based on empty convex set condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 991-997. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/

[1] B. N. Delaunay, “Sur la sphere vide. A la memoire de Georges Voronoi”, Izvestiya AN SSSR, 1934, no. 6, 793–800

[2] B. N. Delone, “O pustoi sfere. K memuaru Georgiya Voronogo”, Zapiski seminara “Sverkhmedlennye protsessy”, 1, 2006, 147–153

[3] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, Uspekhi matematicheskikh nauk, 3 (1937), 16–62 | MR

[4] F. Preparata, M. Sheimos, Vychislitelnaya geometriya: Vvedenie, Nauka, M., 1989, 478 pp. | MR

[5] V. A. Klyachin, A. A. Shirokii, “Triangulyatsiya Delone mnogomernykh poverkhnostei i ee approksimatsionnye svoistva”, Izv. vuzov. Matem., 2012, no. 1, 31–39 | MR | Zbl

[6] V. A. Klyachin V. A., E. A. Pabat, “$C^1$-approksimatsiya poverkhnostei urovnya funktsii, zadannykh na neregulyarnykh setkakh”, Sib. zhurn. industr. matem., 13:2 (2010), 69–78 | MR | Zbl

[7] V. A. Klyachin, “O mnogomernom analoge primera Shvartsa”, Izv. RAN. Ser. matem., 76:4 (2012), 41–48 | DOI | MR | Zbl

[8] V. A. Klyachin, V. V. Popov, “Metod tsepei dlya organizatsii khraneniya mnogomernykh triangulyatsii”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika, 19:2 (2013), 71–79

[9] I. M. Gelfand, A. V. Zelevinskii, M. M. Kapranov, “Uravneniya gipergeometricheskogo tipa i toricheskie mnogoobraziya”, Funktsion. analiz i ego pril., 23:2 (1989), 12–26 | MR | Zbl

[10] I. M. Gelfand, A. V. Zelevinskii, M. M. Kapranov, “Diskriminanty mnogochlenov ot mnogikh peremennykh i triangulyatsii mnogogrannikov Nyutona”, Algebra i analiz, 2:3 (1990), 1–62 | MR | Zbl

[11] V. A. Klyachin, “Ob odnom obobschenii usloviya Delone”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2008, no. 1, 48–50

[12] V. A. Klyachin, “Triangulyatsii na osnove usloviya pustogo vypuklogo mnozhestva”, Tezisy Mezhdunarodnoi konferentsii «Dni geometrii v Novosibirske-2015» (Institut matematiki im. S. L. Soboleva SO RAN, 26–29 avgusta 2015), Novosibirsk, 2015, 30–31

[13] V. A. Klyachin, “Algoritm triangulyatsii, osnovannyi na uslovii pustogo vypuklogo mnozhestva”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika, 28:3 (2015), 27–33 | DOI

[14] V. M. Ilman, “Ekstremalnye svoistva triangulyatsii Delone”, Algoritmy i programmy, 88:10 (1985), 57–66

[15] R. Sibson, “Locally equiangular triangulations”, Computer Journal, 21:3 (1978), 243–245 | DOI | MR

[16] A. V. Akopyan, “Ekstremalnye svoistva triangulyatsii Delone”, Trudy ISA RAN, 46 (2009), 174–187

[17] H. Edelsbrunner, Geometry and topology for mesh generation, Cambridge University Press, 2001, 177 pp. | MR | Zbl

[18] N. P. Dolbilin, O. R. Musin, G. Edelsbrunner, “Ob optimalnosti funktsionalov na triangulyatsiyakh mnozhestv Delone”, Uspekhi matematicheskikh nauk, 67:4(406) (2012), 189–190 | DOI | MR | Zbl

[19] N. P. Dolbilin, H. Edelsbrunner, A. Glazyrin, O. R. Musin, “Functionals on triangulations of Delaunay sets”, Mosc. Math. J., 14:3 (2014), 491–504 | MR | Zbl

[20] O. R. Musin, “Properties of the Delaunay triangulation”, Proceedings of the 1997 13th Annual Symposium on Computational Geometry (Nice, Fr, 1997), 424–426