Extremal properties for triangulation based on empty convex set condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 991-997
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest to consider the empty condition for the special family of convex sets. For the given finite set $P\subset \mathbb{R}^n$ we shall say that empty condition for convex set $B\subset \mathbb{R}^n$ is fulfilled if $P\cap B=P\cap \partial B$. This condition is a generalization of the classic Delaunay empty sphere condition. We prove some extremal properties for the corresponding triangulations.
Mots-clés :
triangulation, Delaunay triangulation
Keywords: convex set, convex hull, empty sphere condition.
Keywords: convex set, convex hull, empty sphere condition.
@article{SEMR_2015_12_a51,
author = {V. A. Klyachin},
title = {Extremal properties for triangulation based on empty convex set condition},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {991--997},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/}
}
V. A. Klyachin. Extremal properties for triangulation based on empty convex set condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 991-997. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a51/