Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a48, author = {O. A. Bogoyavlenskaya}, title = {On one family of finite gap curvilinear orthogonal coordinates}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {947--954}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a48/} }
O. A. Bogoyavlenskaya. On one family of finite gap curvilinear orthogonal coordinates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 947-954. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a48/
[1] G. Darboux, Lecons sur le Systemés Ortogonaux et Coordonnées Curvilignes, Gauthier–Villars, Paris, 1910 | Zbl
[2] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equation”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[3] I. M. Krichever, “Algebraic-geometric n-orthogonal curvilinear coordinate systems and solutions of the associativity equations”, Functional Analysis and Its Applications, 31:1 (1997), 32–50 | DOI | MR | Zbl
[4] A. E. Mironov, I. A. Taimanov, “Orthogonal curvilinear coordinate systems corresponding to singular spectral curves”, Proceedings of the Steklov Institute of Mathematics, 255, 2006, 180–196 | DOI | MR | Zbl
[5] I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Mathematical Surveys, 66:1 (2011), 111–150 | DOI | MR | Zbl