@article{SEMR_2015_12_a47,
author = {O. A. Bogoyavlenskaya},
title = {On deformations of metrics with holonomy $Spin(3,4)$ on cones over {pseudo-Riemannian} manifolds},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {940--946},
year = {2015},
volume = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a47/}
}
TY - JOUR AU - O. A. Bogoyavlenskaya TI - On deformations of metrics with holonomy $Spin(3,4)$ on cones over pseudo-Riemannian manifolds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 940 EP - 946 VL - 12 UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a47/ LA - ru ID - SEMR_2015_12_a47 ER -
O. A. Bogoyavlenskaya. On deformations of metrics with holonomy $Spin(3,4)$ on cones over pseudo-Riemannian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 940-946. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a47/
[1] Ya. V. Bazaikin, “On the new examples of complete noncompact Spin(7)-holonomy metrics”, Siberian Mathematical Journal, 48:1 (2007), 11–32 | DOI | MR
[2] Ya. V. Bazaikin, “Noncompact Riemannian spaces with the holonomy group spin(7) and 3-Sasakian manifolds”, Proceedings of the Steklov Institute of Mathematics, 263, 2008, 6–17 | DOI | MR | Zbl
[3] Ya. V. Bazaikin, E. G. Malkovich, “Spin$(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group $SU(4)$”, Sbornik: Mathematics, 202:4 (2011), 3–30 | DOI | MR | Zbl
[4] R. L. Bryant, S. L. Salamon, “On the construction of some complete metrics with exceptional holonomy”, Duke Math. J., 58 (1989), 829–850 | DOI | MR | Zbl
[5] M. Cvetic, G. W. Gibbons, H. Lu, C. N. Pope, “New Complete Non-compact $Spin(7)$ Manifolds”, Nucl. Phys. B, 620 (2002), 29–54 | DOI | MR | Zbl
[6] H. Kanno, Y. Yasui, “On $Spin(7)$ holonomy metric based on $SU(3)/U(1)$, I”, J. Geom. Phys., 43 (2002), 293–309 | DOI | MR | Zbl
[7] S. Helgason, Differential geometry and symmetric spaces, Mir, M., 1964 | Zbl
[8] A. Besse, Einstein manifolds, Mir, M., 1990 | MR | Zbl
[9] A. Gray, “Weak holonomy groups”, Math. Z., 123 (1971), 290–300 | DOI | MR | Zbl