On a morphism of compactifications of moduli scheme of vector bundles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 577-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

A morphism of nonreduced Gieseker–Maruyama functor (of semistable coherent torsion-free sheaves) on the surface to the nonreduced functor of admissible semistable pairs with the same Hilbert polynomial, is constructed. This leads to the morphism of moduli schemes with possibly nonreduced scheme structures. As usually, we study subfunctors corresponding to main components of moduli schemes.
Keywords: semistable coherent sheaves, moduli functor
Mots-clés : moduli space, algebraic surface.
@article{SEMR_2015_12_a42,
     author = {N. V. Timofeeva},
     title = {On a morphism of compactifications of moduli scheme of vector bundles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {577--591},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a morphism of compactifications of moduli scheme of vector bundles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 577
EP  - 591
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/
LA  - en
ID  - SEMR_2015_12_a42
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a morphism of compactifications of moduli scheme of vector bundles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 577-591
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/
%G en
%F SEMR_2015_12_a42
N. V. Timofeeva. On a morphism of compactifications of moduli scheme of vector bundles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 577-591. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/

[1] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | MR | Zbl

[2] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface, II”, Sb. Math., 200:3 (2009), 405–427 | DOI | MR | Zbl

[3] N. V. Timofeeva, “On degeneration of surface in Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90 (2011), 142–148 | DOI | MR | Zbl

[4] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | MR | Zbl

[5] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | MR | Zbl

[6] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. V: Existence of universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | MR | Zbl

[7] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60 | DOI | MR | Zbl

[8] M. Maruyama, “Moduli of stable sheaves, II”, J. Math. Kyoto Univ. (JMKYAZ), 18:3 (1978), 557–614 | MR | Zbl

[9] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math, E31, Vieweg, Braunschweig, 1997 | DOI | MR | Zbl

[10] K. G. O'Grady, “Moduli of vector bundles on projective surfaces: some basic results”, Inv. Math., 123:1 (1996), 141–207 | DOI | MR | Zbl

[11] K. G. O'Grady, Moduli of vector-bundles on surfaces, 20 Sep 1996, arXiv: alg-geom/9609015

[12] D. Gieseker, J. Li, “Moduli of high rank vector bundles over surfaces”, Journal of the Amer. Math. Soc., 9:1 (1996), 107–151 | DOI | MR | Zbl

[13] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York–Berlin, 1995 | DOI | MR | Zbl

[14] N. V. Timofeeva, “Compactification in Hilbert scheme of moduli scheme of stable 2-vector bundles on a surface”, Math. Notes, 82:5 (2007), 677–690 | DOI | MR | Zbl

[15] A. Grothendieck, Seminaire de Géométrie Algébrique du Bois Marie, 1960–61, v. I, Lecture Notes in Math., Revêtements étales et groupe fondamental, Springer-Verlag, Berlin–Heidelberg–New York, 1971, MR0217083 pp.

[16] A. S. Tikhomirov, “The variety of complete pairs of zero-dimensional subschemes of an algebraic surface”, Izvestiya: Mathematics, 61:6 (1997), 1265–1291 | DOI | MR | Zbl

[17] A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique, Première Partie, v. III, Inst. Hautes Études Sci. Publ. Mathématiques, 11, Étude Cohomologique des Faiceaux Cohérents, IHÉS, Paris, 1961 | MR

[18] M. Raynaud, L. Gruson, “Critères de platitude et de projectivité: Techniques de ‘`platification" d’un module”, Inv. Math., 13 (1971), 1–89 | DOI | MR | Zbl

[19] A. Grothendieck, J. A. Dieudonné, Eléments de Géométrie Algébrique, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR

[20] N. V. Timofeeva, “Infinitesimal criterion for flatness of projective morphism of schemes”, S.-Petersburg Math. J. (Algebra i Analiz), 26:1 (2014), 185–195 | MR