Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a42, author = {N. V. Timofeeva}, title = {On a morphism of compactifications of moduli scheme of vector bundles}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {577--591}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/} }
N. V. Timofeeva. On a morphism of compactifications of moduli scheme of vector bundles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 577-591. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a42/
[1] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | MR | Zbl
[2] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface, II”, Sb. Math., 200:3 (2009), 405–427 | DOI | MR | Zbl
[3] N. V. Timofeeva, “On degeneration of surface in Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90 (2011), 142–148 | DOI | MR | Zbl
[4] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | MR | Zbl
[5] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | MR | Zbl
[6] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. V: Existence of universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | MR | Zbl
[7] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60 | DOI | MR | Zbl
[8] M. Maruyama, “Moduli of stable sheaves, II”, J. Math. Kyoto Univ. (JMKYAZ), 18:3 (1978), 557–614 | MR | Zbl
[9] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math, E31, Vieweg, Braunschweig, 1997 | DOI | MR | Zbl
[10] K. G. O'Grady, “Moduli of vector bundles on projective surfaces: some basic results”, Inv. Math., 123:1 (1996), 141–207 | DOI | MR | Zbl
[11] K. G. O'Grady, Moduli of vector-bundles on surfaces, 20 Sep 1996, arXiv: alg-geom/9609015
[12] D. Gieseker, J. Li, “Moduli of high rank vector bundles over surfaces”, Journal of the Amer. Math. Soc., 9:1 (1996), 107–151 | DOI | MR | Zbl
[13] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York–Berlin, 1995 | DOI | MR | Zbl
[14] N. V. Timofeeva, “Compactification in Hilbert scheme of moduli scheme of stable 2-vector bundles on a surface”, Math. Notes, 82:5 (2007), 677–690 | DOI | MR | Zbl
[15] A. Grothendieck, Seminaire de Géométrie Algébrique du Bois Marie, 1960–61, v. I, Lecture Notes in Math., Revêtements étales et groupe fondamental, Springer-Verlag, Berlin–Heidelberg–New York, 1971, MR0217083 pp.
[16] A. S. Tikhomirov, “The variety of complete pairs of zero-dimensional subschemes of an algebraic surface”, Izvestiya: Mathematics, 61:6 (1997), 1265–1291 | DOI | MR | Zbl
[17] A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique, Première Partie, v. III, Inst. Hautes Études Sci. Publ. Mathématiques, 11, Étude Cohomologique des Faiceaux Cohérents, IHÉS, Paris, 1961 | MR
[18] M. Raynaud, L. Gruson, “Critères de platitude et de projectivité: Techniques de ‘`platification" d’un module”, Inv. Math., 13 (1971), 1–89 | DOI | MR | Zbl
[19] A. Grothendieck, J. A. Dieudonné, Eléments de Géométrie Algébrique, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR
[20] N. V. Timofeeva, “Infinitesimal criterion for flatness of projective morphism of schemes”, S.-Petersburg Math. J. (Algebra i Analiz), 26:1 (2014), 185–195 | MR