The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 874-883
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct and investigate a class of explicit estimators for the unknown parameter in a logarithmic regression problem. We present general conditions for these estimators to be asymptotically normal. It is the fourth class of non-linear regression problems for which such explicit estimators are found.
Keywords:
logarithmic regression, difficulties in the least squares method, explicit estimators of the parameters, asymptotically normal estimators.
@article{SEMR_2015_12_a38,
author = {A. A. Kalenchuk and A. I. Sakhanenko},
title = {The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {874--883},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a38/}
}
TY - JOUR AU - A. A. Kalenchuk AU - A. I. Sakhanenko TI - The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 874 EP - 883 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a38/ LA - ru ID - SEMR_2015_12_a38 ER -
%0 Journal Article %A A. A. Kalenchuk %A A. I. Sakhanenko %T The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 874-883 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a38/ %G ru %F SEMR_2015_12_a38
A. A. Kalenchuk; A. I. Sakhanenko. The existence of explicit asymptotically normal estimators of an unknown parameter in a logarithmic regression problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 874-883. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a38/