About conditions of gaussian approximation of kernel estimates for distribution density
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 766-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently E. Gine, V. Koltchinskii and L. Sakhanenko (2004) investigated asymptotical behavior of a random variable of the form $\sqrt{n h_n} \sup\nolimits_{t \in \mathbf{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their limit theorems consists of a large number of technically difficult stages and uses more than ten bulky assumptions. In this work we show that under simpler and wider conditions the above stated problem is reduced to the study of asymptotics of a supremum of some special Gaussian process. The obtained result can be used in further investigation of functionals based on empirical processes and kernel density estimators. Our proof is based on the well-known approximation of Komlos, Major and Tusnady (1975).
Keywords: kernel density estimators, brownian motion, brownian bridge, KMT approximation, function of bounded variation.
@article{SEMR_2015_12_a36,
     author = {A. S. Kartashov and A. I. Sakhanenko},
     title = {About conditions of gaussian approximation of kernel estimates for distribution density},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {766--776},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a36/}
}
TY  - JOUR
AU  - A. S. Kartashov
AU  - A. I. Sakhanenko
TI  - About conditions of gaussian approximation of kernel estimates for distribution density
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 766
EP  - 776
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a36/
LA  - ru
ID  - SEMR_2015_12_a36
ER  - 
%0 Journal Article
%A A. S. Kartashov
%A A. I. Sakhanenko
%T About conditions of gaussian approximation of kernel estimates for distribution density
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 766-776
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a36/
%G ru
%F SEMR_2015_12_a36
A. S. Kartashov; A. I. Sakhanenko. About conditions of gaussian approximation of kernel estimates for distribution density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 766-776. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a36/

[1] E. Gine, V. Koltchinskii, L. Sakhanenko, “Kernel density estimators: convergence in distribution for weighted sup-norms”, Probability Theory and Related Fields, 130:2 (2004), 167–198 | DOI | MR | Zbl

[2] E. Gine, V. Koltchinskii, J. Zinn, “Weighted uniform consistency of kernel density estimators”, Annals of Probability, 32:3B (2004), 2570–2605 | MR | Zbl

[3] L. Sakhanenko, “Asymptotics of suprema of the weighed Gaussian fields with applications to kernel density estimators”, Theory of Probability and its Applications, 59:3 (2015), 415–451 | DOI | Zbl

[4] J. Komlos, P. Major, G. Tusnady, “An Approximation of Partial Sums of Independent RV'-s, and the Sample DF, I”, Z. Wahrsch. verw. Gebiete, 32 (1975), 111–131 | DOI | MR | Zbl

[5] A. V. Skorokhod, “On a Representation of Random Variables”, Theory of Probability and its Applications, 21:3 (1977), 628–632 | DOI | MR | Zbl