On the asymptotics of the distribution of excess
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 292-299

Voir la notice de l'article provenant de la source Math-Net.Ru

We find asymptotic expansion in the powers of $e^{-b}$ for the distribution of excess over boundary $b\to\infty$ under one-sided Cramér condition on the distribution of random walk summands. As a corollary, we obtain asymptotic expansion for the renewal function.
Keywords: random walk, excess over boundary, renewal function, asymptotic expansions.
@article{SEMR_2015_12_a33,
     author = {V. I. Lotov},
     title = {On the asymptotics of the distribution of excess},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {292--299},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a33/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - On the asymptotics of the distribution of excess
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 292
EP  - 299
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a33/
LA  - ru
ID  - SEMR_2015_12_a33
ER  - 
%0 Journal Article
%A V. I. Lotov
%T On the asymptotics of the distribution of excess
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 292-299
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a33/
%G ru
%F SEMR_2015_12_a33
V. I. Lotov. On the asymptotics of the distribution of excess. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 292-299. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a33/