Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a32, author = {M. N. Nesterov}, title = {Pronormality of {Hall} subgroups in almost simple groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1032--1038}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/} }
M. N. Nesterov. Pronormality of Hall subgroups in almost simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1032-1038. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/
[1] E. P. Vdovin, D. O. Revin, “Pronormality of Hall subgroups in finite simple groups”, Siberian mathematical journal, 53:3 (2012), 419–430 | DOI | MR | Zbl
[2] E. P. Vdovin, D. O. Revin, “On the pronormality of Hall subgroups”, Siberian mathematical journal, 54:1 (2013), 22–28 | DOI | MR | Zbl
[3] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986 | MR | Zbl
[4] P. B. Kleidman, M. W. Liebeck, The Subgroup Structure of Finite Classical Groups, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[6] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc., s3-6:2 (1956), 286–304 | DOI | MR | Zbl
[7] E. P. Vdovin, D. O. Revin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, Journal of Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl
[8] R. W. Carter, Simple groups of Lie type, John Wiley Sons, 1989 | MR | Zbl