Pronormality of Hall subgroups in almost simple groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1032-1038.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Hall subgroups of almost simple groups are pronormal.
Keywords: Hall subgroup, pronormal subgroup, almost simple group, symplectic group.
@article{SEMR_2015_12_a32,
     author = {M. N. Nesterov},
     title = {Pronormality of {Hall} subgroups in almost simple groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1032--1038},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/}
}
TY  - JOUR
AU  - M. N. Nesterov
TI  - Pronormality of Hall subgroups in almost simple groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 1032
EP  - 1038
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/
LA  - ru
ID  - SEMR_2015_12_a32
ER  - 
%0 Journal Article
%A M. N. Nesterov
%T Pronormality of Hall subgroups in almost simple groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 1032-1038
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/
%G ru
%F SEMR_2015_12_a32
M. N. Nesterov. Pronormality of Hall subgroups in almost simple groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1032-1038. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a32/

[1] E. P. Vdovin, D. O. Revin, “Pronormality of Hall subgroups in finite simple groups”, Siberian mathematical journal, 53:3 (2012), 419–430 | DOI | MR | Zbl

[2] E. P. Vdovin, D. O. Revin, “On the pronormality of Hall subgroups”, Siberian mathematical journal, 54:1 (2013), 22–28 | DOI | MR | Zbl

[3] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[4] P. B. Kleidman, M. W. Liebeck, The Subgroup Structure of Finite Classical Groups, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc., s3-6:2 (1956), 286–304 | DOI | MR | Zbl

[7] E. P. Vdovin, D. O. Revin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, Journal of Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[8] R. W. Carter, Simple groups of Lie type, John Wiley Sons, 1989 | MR | Zbl