Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a30, author = {L. Yu. Tsiovkina}, title = {On affine distance-regular covers of complete graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {998--1005}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/} }
L. Yu. Tsiovkina. On affine distance-regular covers of complete graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 998-1005. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[2] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996 | MR | Zbl
[3] C. D. Godsil, R. A. Liebler, C. E. Praeger, “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl
[4] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: the affine case”, Sib. Math. J., 54:6 (2013), 1353–1367 | DOI | MR | Zbl
[5] M. Klin, Ch. Pech, “A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil–Hensel matrices”, Ars Mathematica Contemporanea, 4 (2011), 205–243 | MR | Zbl
[6] GAP Groups, Algorithms, and Programming, Version 4.6.4, , The GAP Group, 2013 http://www.gap-system.org