On affine distance-regular covers of complete graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 998-1005.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, a description of feasible intersection arrays and some group-theoretic constraints for the automorphism groups of arc-transitive antipodal distance-regular covers of $K_n$ have been obtained in affine case. In this paper, we complete the classification of arc-transitive antipodal distance-regular covers of $K_n$ in affine case for odd $n$.
Keywords: arc-transitive graph, distance-regular graph
Mots-clés : antipodal cover.
@article{SEMR_2015_12_a30,
     author = {L. Yu. Tsiovkina},
     title = {On affine distance-regular covers of complete graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {998--1005},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On affine distance-regular covers of complete graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 998
EP  - 1005
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/
LA  - ru
ID  - SEMR_2015_12_a30
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On affine distance-regular covers of complete graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 998-1005
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/
%G ru
%F SEMR_2015_12_a30
L. Yu. Tsiovkina. On affine distance-regular covers of complete graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 998-1005. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996 | MR | Zbl

[3] C. D. Godsil, R. A. Liebler, C. E. Praeger, “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: the affine case”, Sib. Math. J., 54:6 (2013), 1353–1367 | DOI | MR | Zbl

[5] M. Klin, Ch. Pech, “A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil–Hensel matrices”, Ars Mathematica Contemporanea, 4 (2011), 205–243 | MR | Zbl

[6] GAP Groups, Algorithms, and Programming, Version 4.6.4, , The GAP Group, 2013 http://www.gap-system.org