On affine distance-regular covers of complete graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 998-1005

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, a description of feasible intersection arrays and some group-theoretic constraints for the automorphism groups of arc-transitive antipodal distance-regular covers of $K_n$ have been obtained in affine case. In this paper, we complete the classification of arc-transitive antipodal distance-regular covers of $K_n$ in affine case for odd $n$.
Keywords: arc-transitive graph, distance-regular graph
Mots-clés : antipodal cover.
@article{SEMR_2015_12_a30,
     author = {L. Yu. Tsiovkina},
     title = {On affine distance-regular covers of complete graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {998--1005},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On affine distance-regular covers of complete graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 998
EP  - 1005
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/
LA  - ru
ID  - SEMR_2015_12_a30
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On affine distance-regular covers of complete graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 998-1005
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/
%G ru
%F SEMR_2015_12_a30
L. Yu. Tsiovkina. On affine distance-regular covers of complete graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 998-1005. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a30/