Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 930-939

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical strongly regular graph with parameters $(532,156,30,52)$. Let $\Gamma$ be a strongly regular graph with parameters $(532,156,30,52)$ and $G={\rm Aut}(\Gamma)$ be a nonsolvable group acting transitively on the vertex set of $\Gamma$. Then $\bar G=G/O_2(G)\cong J_1$, $S(G)=O_2(G)$ is an irreducible $F_2J_1$-module, $|O_2(G)|>2$ and $\bar G_a\cong L_2(11)$.
Keywords: strongly regular graph
Mots-clés : automorphism group.
@article{SEMR_2015_12_a29,
     author = {A. A. Makhnev and M. M. Khamgokova},
     title = {Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {930--939},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. M. Khamgokova
TI  - Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 930
EP  - 939
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/
LA  - ru
ID  - SEMR_2015_12_a29
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. M. Khamgokova
%T Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 930-939
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/
%G ru
%F SEMR_2015_12_a29
A. A. Makhnev; M. M. Khamgokova. Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 930-939. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/