Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a29, author = {A. A. Makhnev and M. M. Khamgokova}, title = {Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {930--939}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/} }
TY - JOUR AU - A. A. Makhnev AU - M. M. Khamgokova TI - Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 930 EP - 939 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/ LA - ru ID - SEMR_2015_12_a29 ER -
A. A. Makhnev; M. M. Khamgokova. Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 930-939. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a29/
[1] A. A. Makhnev, “O nesuschestvovanii silno regulyarnykh grafov s parametrami (486,165,36,66)”, Ukrainskii matem. zhurnal, 54:7 (2002), 941–949 | MR | Zbl
[2] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[5] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Doklady akademii nauk, 432:5 (2010), 583–587 | MR | Zbl
[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl